Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T06:24:39.807Z Has data issue: false hasContentIssue false

A Synthetic Approach for the Incorporation of Highly Efficient, Thermally Stable Second Order Nonlinear Optical Chromophores Into Side-Chain Polymers

Published online by Cambridge University Press:  16 February 2011

Kevin J. Drost
Affiliation:
EniChem America Inc., Research and Development Center, 2000 Cornwall Road, Monmouth Junction, New Jersey 08852
Alex K-Y. Jen
Affiliation:
EniChem America Inc., Research and Development Center, 2000 Cornwall Road, Monmouth Junction, New Jersey 08852
V. Pushkara Rao
Affiliation:
EniChem America Inc., Research and Development Center, 2000 Cornwall Road, Monmouth Junction, New Jersey 08852
R. M. Mininni
Affiliation:
EniChem America Inc., Research and Development Center, 2000 Cornwall Road, Monmouth Junction, New Jersey 08852
Get access

Abstract

A new synthetic method is developed to incorporate efficient nonlinear optical chromophores containing thiophene conjugating units and tricyanovinyl acceptors into side-chain polymers. This approach emphasizes the incorporation of the tricyanovinyl groups into the pendant side chains after the desired polymer is formed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Prasad, P.N. and Williams, D. J., Introduction to Nonlinear Optical Effects in Molecules and Polymers John Wiley & Sons, Inc., 1991.Google Scholar
2. For our earlier studies on heteroaromalic based donor-acceptor compounds see: a) Rao, V. P., Jen, A. K-Y., Wong, K. Y. and Drost, K. J., J.C.S., , Chem. Commun. 1993. 1118;Google Scholar
b) Rao, V. P., Jen, A. K-Y., Wong, K. Y. and Drost, K. J., Tet. Lett., 1993, 1747;Google Scholar
C) Jen, A. K-Y., Rao, V. P., Wong, K. Y. and Drost, K. J., J.C.S., , Chem. Commun., 1993, 90;Google Scholar
d) Rao, V. P., Jen, A. K-Y., Wong, K. Y., Drost, K. J. and Mininni, R. M., Proc. SPIE, 1775, 32, (1992);CrossRefGoogle Scholar
e) Wong, K. Y., Jen, A. K-Y., Rao, V. P., Drost, K. J. and Mininni, R. M., Proc. SPIE, 1775, 74, (1992);CrossRefGoogle Scholar
f) Jen, A. K-Y., Wong, K. Y., Rao, V. P., Drost, K. J. and Mininni, R. M., Mater. Res. Symp. Proc., 59, 247, (1990);Google Scholar
g) Wong, K. Y., Jen, A. K-Y., Rao, V. P. and Drost, K. J., J. Chem. Phys. (in press);Google Scholar
h) Wong, K. Y., Jen, A. K-Y. and Rao, V. P. and Drost, K. J., Phys. Rev. A (in press).Google Scholar
3. For the most recent studies on donor-acceptor compounds, see: a) Marder, S. R., Gorman, C. B., Tiemann, B. G. and Cheng, L. T., J. Am. Chem. Soc., 115, 3006, (1993);CrossRefGoogle Scholar
b) Marder, S. R., Cheng, L. T. and Tiemann, B. G., J. Chem. Soc, Chem. Commun., 1992. 672.Google Scholar
c) Cheng, L. T., Tam, W., Marder, S. R., Stiegman, A. E., Rikken, G. and Sprangier, C. W., J. Phys. Chem., 95, 10631 & 10643, (1991);CrossRefGoogle Scholar
d) Stiegman, A. E., Graham, E., Perry, K.J., Khundkar, L. R., Perry, J. W. and Cheng, L. T., J. Am. Chem. Soc., 113, 7568 (1991).CrossRefGoogle Scholar
4. For different approaches used in the development of NLO polymeric Materials, see: a) Meredith, G. R., VanDusen, J. G. and Williams, D. J., Macromolecules 15, 1385, (1982);CrossRefGoogle Scholar
b) Robello, D. R., J. Poly. Sci., Poly. Chem., 28, 1, (1990);CrossRefGoogle Scholar
c) Matsumoto, S., Kubodera, K., Kurihara, T. and Kaino, T., Appl. Phys. Lett., 51, 1, (1987);CrossRefGoogle Scholar
d) Jungauer, D., Reck, B., Tweig, R., Yoon, D. Y., Wilson, C. G. and Swalen, J. D., Appl. Phys. Lett., 56, 2610, (1990);CrossRefGoogle Scholar
e) Shi, Y., Steir, W. H., Chen, M., Yu, L. P. and Dalton, L. R., Appl. Phys. Lett., 60, 2577, (1992);CrossRefGoogle Scholar
f) Park, J., Marks, T. J., Yang, J. and Wong, G. K., Chem. Mater., 2, 229, (1990);CrossRefGoogle Scholar
g) Xu, C., Wu, B., Dalton, L. R., Ranon, P. M., Shi, Y. and Steier, W. H., Macromolecules, 25, 6716, (1992);CrossRefGoogle Scholar
h) Xu, C., Wu, B., Dalion, L. R., Shi, Y., Ranon, P. M. and Steier, W. H., Macromolecules, 25, 6714, (1992),.CrossRefGoogle Scholar
5. a) Jen, A. K-Y, Wong, K.Y., Rao, V.P., Drost, K.J. and Mininni, R.M., Mater. Res. Symp. Abst., 1993. 186.Google Scholar
b) Wong, K.Y., Jen, A. K-Y., Rao, V.P., Drost, K.J., Minnini, R.M., Kenney, J.T. and Garito, A.F., QELS Conference, OSA Technical Digest Series 3, 17 (1993).Google Scholar
c) Singer, K. D. and King, L. A., J. Appl. Phys., 70, 3251, (1991);CrossRefGoogle Scholar
d) Singer, K. D., Sohn, J. E., King, L. A., Gordon, H. M., Katz, H. E. and Dirk, C. W., J. Opt. Soc. AM. B, 6, 1339, (1989);CrossRefGoogle Scholar
e) Wu, J. W., Valley, J. F., Ermer, S., Binkley, E. S., Kenny, J. and Lipscomb, G. F., Appl. Phys. Lett., 58, 225, (1991).CrossRefGoogle Scholar
6. 1H-NMR data for the Methacrylate Monomer 6; δ(CDCI3) 7.9 (d, J = 4.5 Hz, IH), 7.4 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 15.9 Hz, 2H), 7.14 (d, J = 4.5 Hz, IH), 7.0 (d, J = 15.9 Hz, 1H), 6.7 (d, J = 8.7 Hz, 2H), 6.1 (s, IH), 5.6 (s, 1H), 4.15 (t, J = 6.4 Hz, 2H), 3.4 (t, J = 6.3 Hz, 2H), 3.05 (s, 3H), 1.96 (s, 3H), 1.3–1.8 (m, 8H). Anal Calcd. for C28H28N4O2S: C, 75.98; H, 6.38. Found: C, 75.78; H, 6.39.Google Scholar
7. The ratio of X/Y was obtained from the 1H-NMR analysis. The proton integration ratio of N-CH3 and O-CH3 was used to determine the ratio of X/Y. 1H-NMR data for a representative copolymer 10: δ (CDCI3) 7.3 (bs, 2H), 7.1 (bs, 2H), 7.0 (bs, IH), 6.95 (bs, 2H), 6.8 (bs, 1H), 6.6 (bs, 2H), 3.85 (bs, 2H), 3.5 (bs, 3H), 3.3 (bs, 2H), 3.0 (bs, 3H), 0.8–2.0 (m, 18H)Google Scholar
8. 1H-NMR data for a representative copolymer 9: δ (CDCI3) 7.9 (bs, 1H), 7.4 (bs, 2H), 7.3 (bs, 2H), 7.1 (bs, 1H), 7.0 (bs, 1H), 6.7 (bs, 2H), 4.05 (bs, 2H), 3.5 (bs, 3H), 3.3 (bs, 2H), 0.8–2.0 (m, 18H).Google Scholar
9. 1H-NMR data for Monomer 10; δ (CDCI3) 7.35 (d, J = 9.0 Hz, 2H), 7.12 (dd, J = 4.5, 1.1 Hz, 1H), 7.05 (d, J = 15.9 Hz, 1H), 7.0–6.9 (m, 2H), 6.86 (d, J = 15.8 Hz, 1H), 6.67 (d, J= 9.1Hz, 2H), 3.35 (t, J = 6.4 Hz, 2H), 2.96 (s, 2H) 2.69 (t, J = 6.3 Hz, 2H), 1.3–1.8 (m, 8H). Anal Caled. for C19H26N2S: C, 72.56; H, 8.33; N, 8.91. Found: C, 72.62; H, 8.45; N, 9.06.Google Scholar
10. Teng, C. C. and Man, H. T., Appl. Phys. Lett., 56, 1734, (1990).CrossRefGoogle Scholar
11. McKusick, B. C., Hecken, R. E., Cairns, T. C., Coffman, D. D. and Mower, H. F., J. Am. Chem. Soc., 80, 2806, (1958).CrossRefGoogle Scholar