Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T13:18:31.177Z Has data issue: false hasContentIssue false

Synthesis, Structure, and Characterization of La1−xBax (0 ≤ x ≤ 1)

Published online by Cambridge University Press:  25 February 2011

Joseph E. Sunstrom IV
Affiliation:
Department of Chemistry University of California Davis, California 95616
Susan M. Kauzlarich
Affiliation:
Department of Chemistry University of California Davis, California 95616
Get access

Abstract

The compounds La1−xBaxTiO3 (0 ≤ × ≤ 1) have been prepared by arc melting stoichiometric amounts of LaTiO3 and BaTiO3. Single phase samples can be made for the entire stoichiometry range. The polycrystalline samples have been characterized by thermal gravimetric analysis, X-ray powder diffraction, and temperature dependent magnetic susceptibility. This series of compounds has been studied as a possible candidate for an early transition metal superconductor.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] see for example: (a) Arbuckle, B. W., Ramanucjachary, K. V., Zhang, Z., Greenblatt, M. J., Sol. State Chem. 88, 278 (1990).Google Scholar
(b) Kemp, J. P., Beai, D. J., Cox, P. A., J. Sol. State Chem. 86, 50 (1990).CrossRefGoogle Scholar
[2] Johnston, D. C., Prakash, H., Zachariasen, W. H., Viswanathan, R., Mater. Res. Bull. 8, 777, (1973).CrossRefGoogle Scholar
[3] Schooley, J. J., Hosier, W. R., Cohen, M. L., Phys. Rev. Lett. 12, 474 (1964).Google Scholar
[4] (a) Sunstrom, J. E. IV, Kauzlarich, S. M., Klavins, P., Chem. Mater. 4, 346 (1992).CrossRefGoogle Scholar
(b) Kauzlarich, S. M., Sunstrom, J. E. IV, Klavins, P., Proceedings of the International Conference of the Chemistry of Electronic Ceramic Materials, edited by Davies, P. K. and Roth, R. S. (NIST Special Publication 804, Gaithersburg, MD, 1991) p. 217.Google Scholar
[5] (a) Maeno, Y., Awaji, S., Matsumoto, H., Fujita, T., Physica B 165&166, 1185 (1990).CrossRefGoogle Scholar
(b) Higuchi, M., Aizawa, K., Yamaya, K., Kodaira, K., J. Sol. State Chem. 92, 573 (1991).Google Scholar
(c) Abbate, M. et. al. Phys. Rev. B 44(11), 5419 (1991).Google Scholar
(d) Fujishima, Y., Tokura, Y., Arima, T., Uchida, S., Physica C 185, 1001 (1991).Google Scholar
[6] (a) Crandles, D. A., Timusk, T., Greedan, J. E., Phys. Rev. B 44 13250 (1991).CrossRefGoogle Scholar
(b) Lichtenberg, F., Widmer, D., Bednorz, J. G., Williams, T., Relier, A. Z., Phys. B82, 211 (1991).Google Scholar
(c) Eitel, M., Greedan, J. E., J. Less Common Met., 116, 95 (1986).Google Scholar
(d) Greedan, J. E., J. Less-Common Met., 111, 335 (1985).Google Scholar
(e) Goral, J. P., Greedan, J. E., J. Magn. Magn. Mater. 37, 315 (1983).Google Scholar
(f) Maclean, D. A., Greedan, J. E., Inorg. Chem. 20, 1025 (1980).CrossRefGoogle Scholar
(g) Bazuev, G. V., Shveikin, G. P., Inorg. Mater. 14 201 (1978).Google Scholar
(h) Ganguly, P., Parkash, Om., Rao, C. N. R., Phys. Status Solidi A 36, 669 (1976).Google Scholar
[9] Johnston, W. D., Sestrich, D., J. Inorg. Nucl. Chem. 20, 32 (1961).Google Scholar
[8] (a) Kleint, C. A., Stopel, U., Rost, A., Phys. Status Solidi A 115, 165 (1989).Google Scholar
(b) Guha, J. P., J. Am. Ceram. Soc. 74, 878 (1991).Google Scholar
(c) For a more complete review, see Galasso, F. S., Perovskites and High Tc Superconductors, (Gordon and Breach Science Publishers, New York, 1990).Google Scholar
[9] Goodenough, , J. B. Prog. Solid State Chem. 5, 145 (1975).Google Scholar