Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T14:16:29.505Z Has data issue: false hasContentIssue false

Synthesis of Mesoporous Zirconia Using an Amphoteric Surfactant

Published online by Cambridge University Press:  10 February 2011

A. Y. Kim
Affiliation:
Pacific Northwest National Laboratory*, Battelle Boulevard, P.O. Box 999, Richland, WA 99352
P. J. Bruinsma
Affiliation:
Pacific Northwest National Laboratory*, Battelle Boulevard, P.O. Box 999, Richland, WA 99352
Y. L. Chen
Affiliation:
Pacific Northwest National Laboratory*, Battelle Boulevard, P.O. Box 999, Richland, WA 99352
J. Liu
Affiliation:
Pacific Northwest National Laboratory*, Battelle Boulevard, P.O. Box 999, Richland, WA 99352
Get access

Abstract

An amphoteric surfactant, cocamidopropyl betaine, was used for the synthesis of mesoporous zirconia. The carboxylate functionality of the surfactant permitted strong bonding with soluble zirconium species, while the quaternary ammonium group ensured large headgroup area and high solubility under acidic conditions. An amphoteric co-template [betaine, or (carboxymethyl)trimethylammonium hydroxide] improved uniformity of the hexagonal mesophase. Transmission electron microscopy (TEM) of the as-synthesized zirconium sulfate mesophase indicated hexagonal mesostructure, and low-angle X-ray diffraction (XRD) showed a 41 Å primary d-spacing and two higher order reflections of a hexagonal lattice. High surface area zirconia was produced by controlled base treatment of the hexagonal mesophase with sodium hydroxide, followed by calcination. TEM and XRD indicated that the mesostructure was stable to 350°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. and Beck, J. S., Nature 359, p. 710 (1992).Google Scholar
2. Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T-W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B. and Schlenker, J. L., J. Am. Chem. Soc. 114, p. 10834 (1992).Google Scholar
3. Huo, Q., Margolese, D. I., Ciesla, U., Demuth, D. G., Feng, P., Gier, T. E., Sieger, P., Firouzi, A., Chmelka, B. F., Schtith, F., and Stucky, G. D., Chem. Mater. 6, p 1176 (1994).Google Scholar
4. Tanev, P. T. and Pinnavaia, T. J., Science 267, p. 865 (1995).Google Scholar
5. Bagshaw, S. A., Prouzet, E., and Pinnavaia, T. J., Science 269, p. 1242 (1995).Google Scholar
6. Antonelli, D. M. and Ying, J. Y., Angew. Chem. Int. Ed. Engl. 34, p. 2014 (1995).Google Scholar
7. Knowles, J. A. and Hudson, M. J., J. Chem. Soc., Chem. Commun., p. 2083 (1995).Google Scholar
8. Kharitonova, G. S., Nefedov, V. I., Pankratova, L. N. and Pershin, V. L.., Russ. J. Inorg. Chem. 19, p. 469 (1974).Google Scholar
9. Kharitonova, G. S. and Pankratova, L. N., Russ. J. Inorg. Chem. 22, p. 379 (1977).Google Scholar
10. Baes, C. F., Jr. and Mesmer, R. E., The Hydrolysis of Cations, John Wiley and Sons, New York, 1976, pp. 152–9.Google Scholar
11. Israelachvili, J. N., Intermolecular and Surface Forces, Academic Press, San Diego, 1992, pp. 380–2.Google Scholar
12. Clearfield, A., Rev. Pure and Appl. Chem. 14, p. 91 (1964).Google Scholar