Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T12:49:05.576Z Has data issue: false hasContentIssue false

Synthesis of Biodegradable Composite for Knee Cartilage Prosthesis Joint

Published online by Cambridge University Press:  19 March 2012

J.C. Pérez-Reyes
Affiliation:
Facultad de Ingeniería Mecánica, UMSNH, Morelia Mich., 58000, México.
G. Carbajal-De la Torre*
Affiliation:
Facultad de Ingeniería Mecánica, UMSNH, Morelia Mich., 58000, México.
M. A. Espinosa-Medina
Affiliation:
Facultad de Ingeniería Mecánica, UMSNH, Morelia Mich., 58000, México.
L. A. Ibarra-Bracamontes
Affiliation:
Facultad de Ingeniería Mecánica, UMSNH, Morelia Mich., 58000, México.
M. Villagómez-Galindo
Affiliation:
Facultad de Ingeniería Mecánica, UMSNH, Morelia Mich., 58000, México.
E. Rubio-Rosas
Affiliation:
Centro Universitario de Vinculación, BUAP. Puebla Pue., 72570, México.
*
* Corresponding author: e-mail: georginacar@gmail.com
Get access

Abstract

Osteoarthritis is a very complex illness of the joints that affects cartilage and subcondral bone. At the last years, researching has been focused in the development and characterization of composite materials, evaluating their structural properties. Some o those composite materials are constituted by organic and inorganic compounds forming hybrids. These materials can improve their properties due to the interaction of reinforcement hard particles in the polymeric matrix. The interest on the composite biomaterials has been increased on the biomedical applications such as tissue regenerating based in synthetic polymers with biodegradable and biocompatible properties whose can be reinforced by calcium phosphates. In this sense, hydroxyapatite [Ca10(PO4)6(OH)2] is often used for biological implants due its mineral phase similitude with bone microstructure and tissue compatibility. Similarly, polylactic acid (PLA) is a used polymer for implant applications due physicochemical and biocompatibility properties, and short degradation time also. In order to obtain a composite that can be used as a regenerating material on the osteoarthritis problem, in this work a (90/10 wt.%) polylactic/hydroxyapatite hybrid composite was produced by chemical synthesis and characterized by X-ray diffraction, SEM, FT-IR and TGA/DSC techniques.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Landínez, N.S., Vanegas, J.C., Garzón, D.A.. Regulación molecular del cartílago articular en función de las cargas mecánicas y el proceso osteoartrósico: una revisión teórica . Scielo (2008) 24.Google Scholar
2. Sánchez, J.C., López, D.F.., Latreia 24, 167 (2011)Google Scholar
3. Trujillo, E., Revista especializada en reumatología, 32, 7 (2005).Google Scholar
4. Estupiñán, H. A., Peña, D. Y., Vásquez, C., Laverde, D., Lozano, L. A., Jaimes, J. C.. Avances Inv. en Ing. 12, 1 (2010)Google Scholar
5. López, R. A., Galán, C., Química de alimentos, Tunja, 1, 3 (2010)Google Scholar
6. Martínez, A.B., Carbajal, G., Esparza, H.E., Torres, R.. Nanohibrido Poliuretano/Hidroxiapatita. Síntesis caracterización y degradación in vitro . X Congreso Nacional de Microscopia-Morelia (2010) p.1.Google Scholar
7. Estupiñan, H.A, Parada, D.C., Laverde, D., Peña-B, D. Y., Vázquez-Q, C.. Scientia Et Technica, 36, 267 (2007)Google Scholar
8. Animas, M.T.I.. Tesis: “Síntesis y caracterización de Hidroxiapatita a partir de Nitrato de Calcio y Fosfato de AmonioBenemérita Universidad Autónoma de Puebla. (2005)Google Scholar
9. Mang, Michael. “Poly(lactic acid): Performance Materials from Renewable Resources,” NPE 2000 Conference, Chicago, 2 Junio 2000.Google Scholar
10. Jiménez, M. L.. Tesis: Obtención y caracterización de un material compuesto a base cascarilla de café y polipropileno, Benemérita Universidad Autónoma de Puebla (2010)Google Scholar
11. Martínez, C. A., García, P., Martínez, A., Romero, J., Biomecánica, 9, 2 (2001)Google Scholar
12. Martínez, A. B., Esparza, H.E., Carbajal de la Torre, G., Ortiz-Landeros, J., Superfice y Vacío, 21, 2 (2008)Google Scholar
13. Londoño, M. E., Echavarría, A. De La Calle, F., Revista EIA, 5, 109 (2006)Google Scholar
14. Hernández, M.A., Vázquez, J. M, López, A. S., Sifuentes, P., Garnica, M.G., Díaz, y L.L.. Hidroxiapatita sintética obtenida por la ruta de precipitación de soluciones acuosas .Google Scholar
15. Perales, M.E., Torres, A.M., Flores, A.I., Síntesis de polímeros biodegradables: Ácido Poliláctico . Congreso Nacional de Microscopia(X Morelia Michoacán México (2100) 2.Google Scholar