Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T13:47:05.668Z Has data issue: false hasContentIssue false

Synthesis, Characterization, and Reactivity of Feitknechtite

Published online by Cambridge University Press:  10 February 2011

J. Luo
Affiliation:
U-60, Department of Chemistry, University of Connecticut Storrs, CT 06269–4060, suib@uconnvm.uconn.edu
S. R. Segal
Affiliation:
U-60, Department of Chemistry, University of Connecticut Storrs, CT 06269–4060, suib@uconnvm.uconn.edu
J. Y. Wang
Affiliation:
U-60, Department of Chemistry, University of Connecticut Storrs, CT 06269–4060, suib@uconnvm.uconn.edu
Z. R. Tian
Affiliation:
U-60, Department of Chemistry, University of Connecticut Storrs, CT 06269–4060, suib@uconnvm.uconn.edu
S. L. Suib
Affiliation:
U-60, Department of Chemistry, University of Connecticut Storrs, CT 06269–4060, suib@uconnvm.uconn.edu Department of Chemical Engineering and Institute of Materials Science
Get access

Abstract

The synthesis of Mg2+ doped β-MnOOH which is known as feitknechtite is reported. Feitknechtite is a layered material having the Cd12 structure. The characterization of Mg2+ doped feitknechtite was done with X-ray powder diffraction, elemental analysis, energy dispersive X-ray analysis, scanning electron microscopy, alternating current (AC) impedance, Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, average oxidation state titrations of manganese, and acidity measurements. The formation of feitknechtite is related to the MnO4−/Mn2+ ratio used in the synthesis. Feitknechtite can be converted to synthetic birnessite or octahedral layer birnessite (OL-1) which is a precursor to the 6.9 Å tunnel structure material todorokite.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Feitknecht, V. W.; Marti, W. Helv. Chem. Acta, 1945, 28, 129148.Google Scholar
2. Frondel, C. Am. Min., 1953, 38, 761769.Google Scholar
3. Feitknecht, V. W.; Brunner, P.; Oswald, H. R. Zeit. Anorag. Allgem. Chem., 1962, 316 154160.Google Scholar
4. Wells, A. F., Structural Inorganic Chemistry, 1973, 4th Edition, Pergamon Pres, Oxford, pp. 520528.Google Scholar
5. Moore, T. E.; Ellis, M.; Selwood, P. W. J. Am. Chem. Soc., 1950, 72, 856866.Google Scholar
6. Feitknecht, V. W.; Marti, W. Helv. Chem. Acta, 1945, 28, 148156.Google Scholar
7. Bricker, O. Am. Min., 1965, 50, 12961354.Google Scholar
8. Shen, Y. F.; Zerger, R. P.; DeGuzman, R.; Suib, S. L.; McCurdy, L.; Potter, D. I.; O'Young, C. L. J. Chem. Soc. Chem. Comm., 1992, 17, 12131214.Google Scholar
9. Shen, Y. F.; Zerger, R. P.; DeGuzman, R.; Suib, S. L.; McCurdy, L.; Potter, D. I.; O'Young, C. L. Science. 1993, 260, 511515.Google Scholar
10. DeGuzman, R. N.; Awaluddin, A.; Shen, Y. F.; Tian, Z. R.; Suib, S. L.; Ching, S.; O'Young, C. L. Chem. Mater., 1995, 7, 12861292.Google Scholar
11. Simon, M. W.; Nam, S. S.; Xu, W. Q.; Suib, S. L.; Edwards, J. C.; O'Young, C.-L. J. Phys. Chem., 1992. 96, 63816388.Google Scholar
12. Yin, Y. G.; Xu, W. Q.; DeGuzman, R.; Suib, S. L.; O'Young, C. L. Inorg. Chem., 1994, 33, 43844389.Google Scholar
13. Yin, Y. G.; Xu, W. Q.; Shen, Y. F.; Suib, S. L.; O'Young, C. L. Chem. Mater., 1994, 6, 18031808.Google Scholar
14. Shen, Y. F.; Suib, S. L.; O'Young, C. L. J. Am. Chem. Soc., 1994, 116, 1102011029.Google Scholar
15. Berner, R. A. Principles of Chemical Sedimentoloay, McGraw-Hill, NY, 1971, 158191.Google Scholar
16. Bach, S.; Periera-Ramos, J. P.; Baffier, N. J. Solid State Chem., 1990, 88, 325.Google Scholar
17. Golden, D. C.; Chen., C. C.; Dixon, J. B. Science, 1986, 231, 717719.Google Scholar