No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
In this study, we incorporated vanadium pentoxide xerogel into an alumina matrix and into a silica matrix in order to improve the structural stability by incorporating the electroactive material into an inert matrix which provides structural stability to the electrode. The novel materials were characterized by powder X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectrometry, cyclic voltammetry and impedance spectroscopy. V2O5/SiO2 and V2O5/Al2O3 xerogel composites prepared by soft chemistry present conductivity almost five orders of magnitude higher than other related systems. The electrochemical behavior is quite similar to that found for V2O5 xerogel. In addition, the cyclic voltammetric and electrochemical impedance spectroscopy studies demonstrated that the alumina and silica matrices provide an improvement of the electrochemical properties mainly in relation to the kinetics of the lithium electroinsertion into the oxide matrix with little decrease of total charge during successive redox cycles. Overall, the synthetic approach applied in this study is extremely attractive due to its simplicity and can provide new strategies for tailoring new materials and future family members for electrochromic devices, batteries and chemical sensing.