Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T11:56:29.379Z Has data issue: false hasContentIssue false

Synthesis and Properties of [B/C] Layered Compounds.

Published online by Cambridge University Press:  01 February 2011

Takao Mori*
Affiliation:
National Institute for Materials Science, Namiki 1–1, Tsukuba, Japan 305–0044 PRESTO, Japan Science and Technology Agency, Honcho 8–4–1, Kawaguchi, Japan
Get access

Abstract

We report synthesis and properties of layered compounds with 2D boron-and-carbon-mixed-atomic-layers which are related to topics of recent high interest. The previous discovery of the first [B/C] graphite intercalation-like compound Sc2B1.1C3.2 and evaluation of reported high temperature ferromagnetism in CaB2C2 are reviewed. MgB2 related [B/C] compounds MgB2C2 and LiBC were synthesized and hole doping carried out in search for superconducting materials with high TC. Superconductivity was not observed for any of the compounds above 1.8 K, but (Mg, Li)B2C2 is demonstrated to be the most promising system, with an insulator to metal transition indicated to be induced.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mori, T. and Tanaka, T., J. Phys. Soc. Jpn, 68 2033 (1999).Google Scholar
2. Mori, T. and Leithe-Jasper, A., Phys. Rev. B 66 214419 (2002).Google Scholar
3. Mori, T. and Mamiya, H., Phys. Rev. B 68 214422 (2003).Google Scholar
4. Mori, T., J. Appl. Phys. 95 7204 (2004).Google Scholar
5. Bauer, J., Halet, J. F., and Saillard, J. Y., Coord. Chem. Rev. 178 (1998) 723.Google Scholar
6. Rogl, P., Phase Diagrams of Ternary Metal-Boron-Carbon Systems, ASM (1998).Google Scholar
7. Mori, T., Tansho, M., Onoda, Y., Shi, Y., and Tanaka, T., Phys. Rev. B 62 7587 (2000).Google Scholar
8. Worle, M., Nesper, R., Mair, G., Schwarz, M. and Schnering, H. G. V., Z. Anorg. Allg. Chem. 621 1153 (1995).Google Scholar
9. Worle, M. and Nesper, R., J. Alloys and Comp. 216, 75 (1994).Google Scholar
10. Kouvetakis, J., Kaner, R. B., Sattler, M. L. and Bartlett, N., J. Chem. Soc. Chem. Commun., 1758 (1986).Google Scholar
11. Kamimura, H., Nakao, K., Ohno, T. and Inoshita, T., Physica B&C 99, 401 (1980).Google Scholar
12. Young, D. P., Hall, D., Torelli, M. E., Fisk, Z., Sarrao, J. L., Thompson, J. D., Ott, H. R., Oseroff, S. B., Goodrich, R. G., and Zysler, R. Nature 397 412 (1999).Google Scholar
13. Mori, T. and Otani, S., Solid State Commun 123 287 (2002).Google Scholar
14. Akimitsu, J., Takenawa, K., Suzuki, K., Harima, H., and Kuramoto, Y., Science 293 1125 (2001).Google Scholar
15. Mori, T. and Otani, S., J. Phys. Soc. Jpn. 71 1789 (2002).Google Scholar
16. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., and Akimitsu, J.: Nature 410 63 (2001).Google Scholar
17. Harima, N., Physica C 378–381 18 (2002).Google Scholar
18. Ravindran, P., Vajeeston, P., Vidya, R., Kjekhus, A., and Fjellvag, H., Phys. Rev. B 64 224509 (2001).Google Scholar
19. West and Glasser: J. Mater. Sci. 6 1100 (1971).Google Scholar