Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T14:05:46.170Z Has data issue: false hasContentIssue false

Synthesis and Crystal Structure of Ulm-16, A New Open Framework Fluorinated Gallium Phosphate with 16-Ring Channels

Published online by Cambridge University Press:  10 February 2011

Thierry Loiseau
Affiliation:
Laboratoire des Fluorures, URA CNRS 449, Faculté des Sciences, Université du Maine, 72017 Le Mans cedex, France.
Gérard Férey
Affiliation:
Laboratoire des Fluorures, URA CNRS 449, Faculté des Sciences, Université du Maine, 72017 Le Mans cedex, France.
Get access

Abstract

The synthesis and characterization of ULM-16, a new fluorinated gallophosphate Ga4(PO4)F2 • 1.5 NC6H14 • 0.5 H2O • 0.5 H3O, is described. This material is hydrothermally prepared at 180°C using cyclohexylamine as the structuring agent. It cristallizes in the orthorhombic space group Pbcn (n° 60) with a = 27.329(4) Å, b = 17.377(2) Å, c = 10.2124(5) Å, V = 4849.6 (9) Å3 and Z = 8. The structure is built up from vertex-linked GaO4 and PO4 tetrahedra, GaO4F trigonal bipyramids and GaO4F2 octahedra forming hexameric units and infinite double crankshaft chains (called cc or UUDD). The hexameric unit is similar to that found in ULM-3, ULM-4, ULM-5 and ULM-8. The two types of building units are fully connected by vertex-sharing with respect to a strict Ga-P alternation. The 3-D framework consists of cylindrical tunnels delimited by sixteen and six polyhedra running along [001]. The cyclohexylamine molecules are trapped in the wider pores and interact with the bridging fluorine atoms and hydration water through hydrogen bonds. The ULM-16 topology is closely related to that of ULM-5 where, in ULM-16, the infinite crankshaft chains replace the isolated D4R cages of ULM-5. TGA curve (under argon) indicates that the ULM-16 structure is intact up to 800°C. Structural relationships will be stated explicitly for the different structures of the ULM-n series containing the hexameric units.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wilson, S.T., Lock, B.M., Messina, C.A., Cannan, T.R. and Flanigen, E.M., J. Am. Chem. Soc. 104, p. 1146 (1982).Google Scholar
2. Flanigen, E.M., Patton, R.L. and Wilson, S.T., Stud. Surf. Sci. Catal. 37, p.13 (1988).Google Scholar
3. Parise, J.B., J. Chem. Soc., Chem. Commun. p. 606 (1985)Google Scholar
4. Gier, T.E. and Stucky, G.D., Nature 349, p. 508 (1991).Google Scholar
5. Xu, R., Chen, J. and Feng, C., Stud. Surf. Sci. Catal. 60, p.63 (1991).Google Scholar
6. Flanigen, E.M. and Patton, R.L., US Patent No. 4073865 (1978).Google Scholar
7. Guth, J.L., Kessler, H. and Wey, R., Stud. Surf. Sci. Catal. 28, p. 121 (1986).Google Scholar
8. Kessler, H., Patarin, J. and Schott-Darie, C., Stud. Surf. Sci. Catal. 85, p. 75 (1994).Google Scholar
9. Estermann, M., McCusker, L.B., Baerlocher, C., Merrouche, A. and Kessler, H., Nature 352, p. 320 (1991).Google Scholar
10. Férey, G., J. Fluorine Chem. 72, p. 187(1995).Google Scholar
11. Serpaggi, F., Loiseau, T., Riou, D., Férey, G. and Hosseini, M.W., Eur. J. Solid State Inorg. Chem. 31, p. 595 (1994).Google Scholar
12. Riou, D. and Férey, G.,, Eur. J. Solid State Inorg. Chem. 31, p. 605 (1994).Google Scholar
13. Renaudin, J. and Férey, G., J. Solid State Chem. 120, p. 197 (1995).Google Scholar
14. Cavellec, M., Riou, D., Ninclaus, C., Grenèche, J.M. and Férey, G., Zeolites, in press (1996).Google Scholar
15. Loiseau, T. and Férey, G., J. Mater. Chem., in press (1996).Google Scholar
16. Jahn, E., Mueller, D., Richter, J., in Synthesis of Microporous Materials. volume 1, edited by Occelli, M.L., Robson, H.E., Nelson Canada, Scarborough (1992).Google Scholar
17. Oliver, S., Kuperman, A., Lough, A., Ozin, G.A., Garcés, J.M., Olken, M.M. and Rudolf, P., Stud. Surf. Sci. Catal. 84, p. 219 (1994).Google Scholar
18. Smith, J.V., Chem. Rev. 88, p. 149 (1988).Google Scholar
19. Smith, J.V. and Rinaldi, F., Miner. Mag. 33; p. 202 (1962).Google Scholar
20. Meier, W.M. and Olson, D.H., Atlas of Zeolites Structure Types, Third Revised Edition, Zeolites, 12, p. 449 (1992).Google Scholar
21. Loiseau, T., Taulelle, F. and Férey, G., Microporous Materials, 5, p. 365 (1996).Google Scholar
22. Chen, J., Li, L., Yang, G. and Xu, R., J. Chem. Soc., Chem. Commun. p. 1217 (1989).Google Scholar
23. Loiseau, T.; Taulelle, F. and Férey, G., Microporous Materials, in preparation.Google Scholar
24. Davis, M.E., Saldarriaga, C., Montes, C., Garces, J. and Crowder, C., Nature 331, p. 698 (1988).Google Scholar
25. Jones, R.H., Thomas, J.M., Chen, J., Xu, R., Huo, Q., Li, S, Ma, Z. and Chippindale, A.M., J. Solid State Chem. 102, p. 204 (1993).Google Scholar
26. Martens, J.A. and Jacobs, P.A., Stud. Surf. Sci. Catal. 85, p. 653 (1994).Google Scholar