Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T14:45:19.072Z Has data issue: false hasContentIssue false

Synthesis and Compositional Control of Size Monodisperse SixGe1-x Nanocrystals for Optoelectronic Applications

Published online by Cambridge University Press:  06 September 2013

Keith Linehan
Affiliation:
Tyndall National Institute, University College Cork, Lee Maltings, Cork, Ireland
Darragh Carolan
Affiliation:
Tyndall National Institute, University College Cork, Lee Maltings, Cork, Ireland
Daithi Ó Sé
Affiliation:
Tyndall National Institute, University College Cork, Lee Maltings, Cork, Ireland
Hugh Doyle
Affiliation:
Tyndall National Institute, University College Cork, Lee Maltings, Cork, Ireland
Get access

Abstract

Alkyl-terminated SixG1-x nanocrystals are prepared at room temperature by co-reduction of Si and Ge precursors by hydride reducing agents within inverse micelles. Compositional control of the alloy silicon-germanium NCs (ca. 3.6 nm) is achieved by varying the relative amounts of each precursor used in the synthesis. Transmission electron microscopy imaging confirmed that the NCs are highly crystalline with a narrow size distribution; optical spectroscopy shows strong quantum confinement effects, with moderate absorption in the UV spectral range, and a strong blue emission with a marked dependency on excitation wavelength.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Semiconductor nanocrystal quantum dots: synthesis, assembly, spectroscopy and applications, edited by Rogach, A. L. (Springer, Wien – New York, 2008).CrossRefGoogle Scholar
Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties, edited by Klimov, V. I. (Marcel Dekker, New York, 2004).Google Scholar
Device applications of silicon nanocrystals and nanostructures, edited by Koshida, N. (Springer, New York, 2008).Google Scholar
Norris, D. J., Efros, A. L. and Erwin, S. C., Science 319, 1776 (2005).CrossRefGoogle Scholar
Bailey, R. E. and Nie, S., J. Am. Chem. Soc. 125, 7100 (2003).CrossRefGoogle Scholar
Barry, S. D., Yang, Z., Kelly, J. A., Henderson, E. J. and Veinot, J. G. C., Chem. Mater. 23, 5096 (2011).CrossRefGoogle Scholar
Palfinger, G., Bitnar, B., Sigg, H., Muller, E., Stutz, S. and Grutzmacher, D., Phys. E 16, 481 (2003).CrossRefGoogle Scholar
Sunamura, H., Shiraki, Y. and Fukatsu, S., Appl. Phys. Lett. 66, 953 (1995).CrossRefGoogle Scholar
Yang, L. F., Watling, J. R., Wilkins, R. C. W., Borici, M., Barker, J. R., Asenov, A., and Roy, S., Semicond. Sci. Technol. 19, 1174 (2004)CrossRefGoogle Scholar
Virgilio, M. and Grosso, G. J., J. Phys.: Condens. Matter 18, 1021 (2006).Google Scholar
Tang, Y. S., Cai, S., Jin, G., Duan, J., Wang, K. L., Soyez, H. M. and Dunn, B. S., Appl. Phys. Lett. 71, 2448 (1997).CrossRefGoogle Scholar
Hwang, C. W., Ryu, M. K., Kim, K. B., Lee, S. C. and Kim, C. S., J. Appl. Phys. 77, 3042 (1995).CrossRefGoogle Scholar
Takeoka, S., Toshikiyo, K., Fujii, M., Hayashi, S. and Yamamoto, K., Phys. Rev. B 61, 15988 (2000).CrossRefGoogle Scholar
Yang, Y. M., Wu, X. L., Siu, G. G., Huang, G. S., Shen, J. C. and Hu, D. S., J. Appl. Phys. 96, 5239, (2004).CrossRefGoogle Scholar
Pi, X. D. and Kortshagen, U., Nanotechnology 20, 295602, (2009).CrossRefGoogle Scholar
Henderson, E. J., Veinot, J. G. C., Chem. Mater. 19, 1886 (2007).CrossRefGoogle Scholar
Erogbogbo, F., Liu, T., Ramadurai, N., Tuccarione, P., Lai, L., Swihart, M. T. and Prasad, P. N., ACS Nano 5, 7950 (2011).CrossRefGoogle Scholar
Williams, A. T. R., Winfield, S. A. and Miller, J. N., Analyst 108, 1067 (1983).CrossRefGoogle Scholar
Tilley, R. D., Warner, J. H., Yamamoto, K., Matsui, I. and Fujimori, H., Chem. Commun. 1833, (2005).CrossRefGoogle Scholar
Taylor, B. R., Kauzlarich, S. M., Delgado, G. R. and Lee, H. W. H., Chem. Mater. 11, 2493 (1999).CrossRefGoogle Scholar
Wilcoxon, J. P., Samara, G. A. and Provencio, P. N., Phys. Rev. B. 64, 035417 (2001).; 60, 2704(1999).CrossRefGoogle Scholar
Warner, J. H., Rubinsztein-Dunlop, H. and Tilley, R. D., J. Phys. Chem. B. 109, 19064 (2005).CrossRefGoogle Scholar