No CrossRef data available.
Published online by Cambridge University Press: 11 July 2013
Yttrium titanate belongs to a family of compounds called pyrochlores with significant properties such as ionic conduction, optical non-linearity and radiation tolerance that have resulted in applications thermal barrier coatings, high-permittivity dielectrics, and materials for safe disposal of actinide-containing nuclear waste, and hydrogen storage material. The application of these materials in ODS ferritic steels, photocatalytic water splitting and a more efficient host material than TiO2 for Er3+ luminescence have been evaluated. ErxY2-xTi2O7 has tremendous applications in fiber amplifiers, integrated optical devices and selective emitters for thermophotovoltaic applications. Since 1-D nanostructures are deemed to be important building blocks for future optical and optoelectronic nanodevices, we have used electrospinning methods to synthesize nanofibers and freestanding, non-woven nanofibers membranes of single phase yttrium titanate and ErxY2-xTi2O7 (Er/(Ti+Er) at. ratio= 0 -15 %) with diameters less than 150 nm and have characterized the physical, thermal and optical properties of these nanofibers.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.