Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T04:25:14.105Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Poly(Glycerol Sebacate) for Human Mesenchymal Response Studies

Published online by Cambridge University Press:  31 January 2011

Israd Hakim Jaafar
Affiliation:
ihj205@lehigh.edu, Lehigh University, Mechanical Engineering & Mechanics, Bethlehem, Pennsylvania, United States
Mohamed M. Ammar
Affiliation:
mma306@lehigh.edu, Lehigh University, Materials Science & Engineering, Bethlehem, Pennsylvania, United States
Raymond E. Pearson
Affiliation:
rp02@lehigh.edu, Lehigh University, Materials Science & Engineering, Bethlehem, Pennsylvania, United States
John P. Coulter
Affiliation:
jc0i@lehigh.edu, Lehigh University, Mechanical Engineering & Mechanics, Bethlehem, Pennsylvania, United States
Sabrina S. Jedlicka
Affiliation:
ssj207@lehigh.edu, Lehigh University, Materials Science & Engineering, Bethlehem, Pennsylvania, United States
Get access

Abstract

Cell fate modification is a critical step in preparing cells and tissues for implantation therapeutics. Novel materials possessing physical, mechanical, and chemical properties similar to those found in vivo provide a potential platform in building artificial microenvironments for therapeutic applications and well-defined biointerfaces for examining differentiation potential in stem cell biology. Poly(glycerol sebacate) (PGS), a novel biocompatible and biodegradable elastomer is one such material. With tunable mechanical properties in the range of common soft tissue, the material provides an invaluable alternative platform for use in cell-to-substrate interaction studies. This paper describes the tunability of PGS mechanical properties based on variations in curing temperatures (130, 140, and 165 °C). We characterized the material by examining properties that include equilibrium Young's modulus (E), glass transition temperature (Tg), loss factor (tan δ), degree of crosslinking, cure kinetics, protein conformational changes, and molecular bonding compositions. Variations in PGS curing temperature provide differences in physical cues presented to the hMSCs, and work is underway to examine the cellular responses of these hMSCs to microstructured PGS. Ultimately, micro- and nanostructured PGS may be useful tools in the maintenance, differentiation, and control of signaling pathways in hMSCs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Pelham, R.J. Jr, . and Wang, Y-L in Cell Biology, edited by Pollard, T.D., (Proc. Natl. Acad., Sci. USA 94, La Jolla, CA, 1997) pp. 1366113665.Google Scholar
[2] Lo, C.M., Wang, H.B., Dembo, M., and Wang, Y-L, Biophys J. 79(1), 144 (2000).Google Scholar
[3] Wang, H-B., Dembo, M., and Wang, Y-L, Am. J. Physiol. Cell Physiol., 279, 1345 (2000).Google Scholar
[4] Vogel, V. and Sheetz, M., Nat. Rev. Mol. Cell Biol., 7(4), 265 (2006).Google Scholar
[5] Engler, A.J., Sweeney, H.L., and Discher, D.E., Cell, 124(4), 677 (2006).Google Scholar
[6] Even-Ram, S., Artym, V., and Yamada, K.M., Cell, 126(4), 645 (2006).Google Scholar
[7] Zajac, A.L. and Discher, D.E., Curr. Opin. Cell Biol., 20(6), 609 (2008).Google Scholar
[8] Kim, J-H, Cho, C-S, Choung, Y-H, Kim, K-T, Son, H-M, Seonwoo, H., Baik, S-J, Jeon, S-H., Park, J-Y, Choung, P-H, and Chung, J-H, Tissue Eng. Regen. Med., 6(1), 199 (2009).Google Scholar
[9] Dalby, M.J., Gadegaard, N., Tare, R., Andar, A., Riehle, M.O., Herzyk, P., Wilkinson, C.D., and Oreffo, R.O., Natur. Mater., 6(12), 997 (2007).Google Scholar
[10] Yim, E., Pang, S.W., and Leong, K.W., Exp. Cell Res., 313(9), 1820 (2007).Google Scholar
[11] Bettinger, C.J., Orrick, B., Misra, A., Langer, R., and Borenstein, J.T., Biomater., 27(12), 2558 (2006).Google Scholar
[12] Liao, S., Chan, C.K., and Ramakrishna, S., Mater. Sc. Eng., 28(8), 1189 (2008).Google Scholar
[13] Wang, Y., Ameer, G.A., Sheppard, B.J., Langer, R., Nat. Biotech., 20, 602 (2002).Google Scholar
[14] Sundback, C.A., Shyu, J.Y., Wang, Y., Faquin, W.C., Langer, R., Vacanti, J.P., and Hadlock, T.A., Biomater., 26(27), 5454 (2005).Google Scholar
[15] Motlagh, D., Yang, J., Lui, K.Y., Webb, A.R., and Ameer, G.A., Biomater., 27(24), 4315 (2006).Google Scholar
[16] Wang, Y., Kim, Y.M., and Langer, R., J. Biomed. Mater. Res., Part A, 66A(1), 192 (2003).Google Scholar
[17] Chen, Q.Z., Bismarck, A., Hansen, U., Junaid, S., Tran, M.Q., Harding, S.E., Ali, N.N., Boccaccini, A.R., Biomater., 29(1), 47 (2008).Google Scholar
[18] Jaafar, I.H., Ammar, M.M., Jedlicka, S.S., Pearson, R.A., Coulter, J.P., submitted to the J Materl Sc Letter, 2009 (unpublished).Google Scholar
[19] Neeley, W.L., Redenti, S., Klassen, H., Tao, S., Desai, T., Young, M.J., Langer, R., Biomater., 29(4), 418 (2008).Google Scholar
[20] Bettinger, C.J., Weinberg, E.J., Kulig, K.M M., Vacanti, J.P., Wang, Y., Borenstein, J.T., Langer, R., Biomater. 18(2), 165 (2005).Google Scholar
[21] Jaafar, I.H., Ammar, M.M., Jedlicka, S.S., and Coulter, J.P. in Enhanced Polymer Processing Processing, edited by Coates, P., (Polym. Eng. Proc., Bradford, UK, 2009) pp.294321.Google Scholar
[22] Liu, Q., Tan, T., Weng, J J., and Zhang, L., Biomed Biomed. Mater Mater., 4 025015, (2009).Google Scholar
[23] Gao, J., Crapo, P.M., Wang, Y., Tissue Eng., 12(4), 917 (2006).Google Scholar