Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T13:33:19.925Z Has data issue: false hasContentIssue false

Synthesis and Characterization of NanoComposite Superhard Materials

Published online by Cambridge University Press:  26 February 2011

Yusheng Zhao
Affiliation:
yzhao@lanl.gov Los Alamos National Laboratory Los Alamos Neutron Science Center LANSCE-LC, MS-H805 Los Alamos NM 87545 United States 505-667-3886 505-665-2676
Duanwei He
Affiliation:
duanweihe@yahoo.com Sichuan University Institute of Atomic and Molecular Physics Chendu, Sichuan Province 610065 China, People's Republic of
Jiang Qian
Affiliation:
jqian@ussynthetic.com US Synthetic 1260 South 1600 West Orem UT 84058 United States
Jianzhong Zhang
Affiliation:
jzhang@lanl.gov Los Alamos National Laboratory Los Alamos Neutron Science Center LANSCE-LC, MS-H805 Los Alamos NM 87545 United States
Get access

Abstract

We have developed a novel method of reactive sintering under high pressure and high temperature conditions and have successfully synthesized bulk and nanostructured BC2N, BC4N, and diamond-SiC composites. The keys to this success are the careful preparation of precursor materials through high energy ball-milling and sensible tuning of the sintering conditions (pressure, temperature, and sintering time), leading to the formation of nano-scale features in the final synthesis products. The indentation measurements indicate that BC2N and BC4N have the Vickers hardness of 62 and 68 GPa, respectively, making them the second hardest materials known, second only to diamond. The high P-T reactive sintering results in a nanostructured diamond-SiC composite of high uniformity, low porosity, minimum residual silicon, and minimal quantities of graphite. It tunes subtle interplays of P-T-t to have fine control of thermodynamics and kinetics in the formation of diamond-SiC nanocomposites with nanocrystalline SiC matrix. The surface defects of micron/nano-diamonds are consumed by amorphous/molten silicon in the formation of nanocrystalline SiC matrix. It in turn greatly reduces the forming/mobility of microcracks thus leads to significant enhancement of fracture toughness (by as much as 50%) of the nano-composites without much compromising of hardness. The present study shows how to design/proceed a well controlled nano-synthesis so as to achieve great improvement in nano-mechanics for advance technological applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bundy, F.P., Hall, H.T., and Strong, H.M., Wentorf, R.H., Nature 176, 51 (1955).Google Scholar
2. Wentorf, R.H., J. Chem. Phys. 26, 956 (1957).Google Scholar
3. Cohen, M.L., Phys. Rev. B 32, 7988 (1985).Google Scholar
4. Teter, D.M., Hemley, R.J., Science 271, 53 (1996).Google Scholar
5. Vepřek, S., in Handbook of Ceramic Hard Materials (ed. Riedel, R.,) 104139 (WILEY-VCH Verlag GmbH, D-69469 Weinheim, 2000)Google Scholar
6. Badzian, A. R., Mat. Res. Bull. 16, 1385 (1981).Google Scholar
7. Nakano, S., Akaishi, M., Sasaki, T., & Yamaoka, S., Chem. Mater. 6, 2246 (1994)Google Scholar
8. Knittle, E., Kaner, R. B., Jeanloz, R., Cohen, M. L., Phys. Rev. B 51, 12149 (1995).Google Scholar
9. Komatsu, T., Samedima, M., Awano, T., Kakadate, Y., Fujiwara, S. J., Mater. Processing Technology. 85, 69 (1999).Google Scholar
10. Solozhenko, V. L., Andrault, D., Fiquet, G., Mezouar, M., Rubie, D. C., Appl. Phys. Lett. 78, 1385 (2001).Google Scholar
11. Miess, D. and Rai, G., Materials Science And Engineering A, 209, 270 (1996).Google Scholar
12. Ringwood, A. E., Australia Patent 601561, (1988).Google Scholar
13. Ko, Y.S., Tsurumi, T., Fukunaga, O., and Yano, T., J. Mat. Science 36, 469 (2001).Google Scholar
14. Qian, J., Voronin, G., Zerda, T.W., He, D., and Zhao, Y., J. Mat. Res. 17, 2153 (2002).Google Scholar
15. Zhao, Y., He, D.W., Daemen, L.L., Huang, J., Shen, T.D., Schwarz, R.B., Zhu, Y., Bish, D.L., Zhang, J., Shen, G., Qian, J., and Zerda, T.W., J. Mat. Res. 17, 3139 (2002).Google Scholar
16. Zhao, Y., Qian, J., Daemen, L. L., Pantea, C., Zhang, J., Voronin, G. A. and Zerda, T. W., Appl. Phys. Lett., 84, (2004).Google Scholar
17. Scherrer, P., Gött. Nachr. 2, 98, (1918).Google Scholar
18. Klug, H.P. and Alexander, L.E., X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley-Interscience, 1974), p.Google Scholar
19. Clark, I.E. and Bex, P.A., Indust. Diamond Rev. 1, 43 (1999).Google Scholar
20. Ekimov, E.A., Gavriliuk, A.G., Palosz, B., Gierlotka, S., Dluzewski, P., Tatianin, E., Kluev, Y., and Naletov, A.M., Presz, A., Appl. Phys. Let. 77, 954 (2000).Google Scholar
21. Utsumi, W., Nakano, S., Kimoto, K., Okada, T., Isshiki, M., Taniguchi, T., Funakoshi, K., Akaishi, M., & Shimomura, O., Proceedings of AIRAPT-18, Beijing, 222 (2001)Google Scholar
22. Sun, H., Jhi, S., Roundy, D., Cohen, M. L., Louie, S. G., Phys. Rev. B 64, 094108 (2001).Google Scholar
23. Mattesini, M., Matar, S. F., Computational Materials Science 20, 107 (2001).Google Scholar
24. Lannin, J. S., Merkulov, V. I., Munro, C. H., Asher, S. A., Veerasamy, V. S., & Milne, W. I., Phys. Rev. Lett. 78, 4869 (1997)Google Scholar
25. Siegal, M. P., Tallant, D. R., Martinez-Miranda, L. J., Barbour, J. C., Simpson, R. L., & Overmyer, D. L., Phys. Rev. B 61, 10451 (2000).Google Scholar
26. SchiØtz, J., Tolla, F. D. Di, & Jacobsen, K. W., Nature 391, 561 (1998).Google Scholar
27. Taniguchi, T., Ahaishi, M., & Yamaoka, S., J. Mater. Res. 14, 162 (1999).Google Scholar
28. Anstis, G. R., Chantikul, P., Lawn, B. R. and Marshall, D. B., J. Am. Ceram. Soc., 64, 533x (1981).Google Scholar
29. Wan, J.L., Gasch, M.J., and Mukherjee, A.K., Ultrafine Grained Materials II, 235 (2002).Google Scholar
30. Sirdeshmukh, D.B., Sirdeshmukh, L., Subhadra, K.G., Rao, K. Kishan, and Laxman, S. Bal, Bull. Mater. Sci. 24, 469 (2001).Google Scholar
31. Chermant, J. L., Deschanvres, A., Osterstock, F., Fracture Mechanics of Ceramics, 4, 891 (1978).Google Scholar
32. Qian, J., Daemen, L.L., and Zhao, Y., Diamond & Related Materials 14, 1669 (2005).Google Scholar
33. Hall, E.O., Proc. Phys. Soc. B 64, 747 (1951).Google Scholar
34. Petch, N.J., J. Iron Steel Inst. 173, 25 (1953).Google Scholar
35. Yan, C. S., Mao, H.K., Li, W., Qian, J., Zhao, Y., and Hemley, R.J., Physica Status Solidi A 201, R25 (2004).Google Scholar
36. Saida, J. and Matsushita, M., A Inoue, Materials Transactions 42, 1103 (2001).Google Scholar
37. Valiev, R.Z. and Alexandrov, I.V., Defect And Diffusion Forum 208–2, 141 (2002).Google Scholar
38. He, D., Zhao, Q., Wang, W. H., Che, R. Z., Liu, J., Lou, X. J., & Wang, W. K., J. Non-Cryst. Solids 297, 84 (2002).Google Scholar