Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T22:40:33.246Z Has data issue: false hasContentIssue false

Synthesis and Catalytic Activity of Ni/Ce-MCM-41 Mesoporous Catalysts for Hydrogen Production

Published online by Cambridge University Press:  01 February 2011

J. A. Wang
Affiliation:
ESIQIE, Instituto Politécnico Nacional, Col. Zacatenco, 07738 México D. F., Mexico
J. C. Guevara
Affiliation:
ESIQIE, Instituto Politécnico Nacional, Col. Zacatenco, 07738 México D. F., Mexico
L.F. Chen
Affiliation:
ESIQIE, Instituto Politécnico Nacional, Col. Zacatenco, 07738 México D. F., Mexico
J. Salmones
Affiliation:
ESIQIE, Instituto Politécnico Nacional, Col. Zacatenco, 07738 México D. F., Mexico
M. A. Valenzuela
Affiliation:
ESIQIE, Instituto Politécnico Nacional, Col. Zacatenco, 07738 México D. F., Mexico
P. Salas
Affiliation:
Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Apartado Postal 1-1010, 76000 Querétaro, Mexico
F. H. Cao
Affiliation:
Chemical Engineering School, East China University of Science and Technology, 200237 Shanghai, P. R. China
G. X. Yu
Affiliation:
School of Chemistry and Environmental Engineering, Jianghan University, 430056 Wuhan, P. R. China
Get access

Abstract

Ce-containing MCM-41 mesoporous materials with large surface area and ordered pore structure system have been possible to be synthesized through a surfactant-assisted approach. The textural properties and structural regularity of the materials varied with the Si/Ce molar ratio. It is found that the band at 970 cm-1 in the FTIR spectrum of the Ce-MCM-41 mesoporous materials might be used as an indicator of the formation of the Ce-O-Si bond and its intensity as a measure of a degree of cerium ion substitution in the framework of Si-MCM-41. When Ni was loaded on the Ce-MCM-41 support, the Ni/Ce-MCM-41 catalysts show high catalytic activity which has strong temperature dependence. The methane conversion over these catalysts reached 60-75 % with a 100 % selectivity towards hydrogen.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Aiello, R., Fiscus, J.E.. Loyea, Z., Amiridis, M.D., Appl. Catal. A: General, 192, (2000) 227234.Google Scholar
[2] Y. Li, Chen, J., Qin, Y., Chang, L., Energy & Fuels, 14, (2000) 11881194.Google Scholar
[3] Gosselink, J. W., International Journal of Hydrogen Energy 27 (2002) 11251129.Google Scholar
[4] Zhang, T., Amiridis, M. D., Applied Catalysis A: General 167 (1998) 161172.Google Scholar
[5] Armor, J. N., Applied Catalysis A: General 176 (1999) 159176.Google Scholar
[6] Holladay, J. D., Hu, J., King, D. L. and Wang, Y., Catalysis Today 139 (2009) 244260.Google Scholar
[7] Song, C. S., Catalysis Today 77 (2002) 1749.Google Scholar
[8] MuHugh, K., Hydrogen Production Methods, MPR Associates Inc. 2005, p.41.Google Scholar
[9] Song, H., Zhang, L., Ozkan, U. S., Green Chemistry 9 (2007) 686694.Google Scholar
[10] Hoogers, G., Fuel Cell Technology Handbook, CRC Press Boca Raton, 2003, p. 23.Google Scholar
[11] Zhang, Y., Smith, K. J., Catal. Today 77 (2002) 257268.Google Scholar
[12] Chum, H. I., Overend, R. P., Fuel Processing Technology 71 (2001) 187195.Google Scholar
[13] Muradov., N. Energy & Fuels 12 (1998) 4148.Google Scholar
[14] Shah, N., Panjala, D., Huffman, G.P., Energy & Fuels, 15, (2001) 15281534.Google Scholar
[15] Otsuka, K., Takenaka, S., Catal. Surveys Asia, 8 (2004) 7790.Google Scholar
[16]. y, H. Wang Baker, R.T.K., J. Phys. Chem. B, 108 (2004) 2027320277.Google Scholar
[17] Couttenye, R.A., Vila, M.H. De, Suib, S.L., J. Catal. 233 (2005) 317326.Google Scholar
[18] Sánchez, E., Salmones, J., Wang, J.A., Valenzuela, M.A., Garcia, A., Catalysis Today 148 (1-2) (2009) 134139.Google Scholar
[19] Otsuka, K., Kobayashi, S., Takenaka, S., J. Catal. 200 (2001) 49.Google Scholar
[20] Ermakova, M. A., Ermakov, D. Y., Chuvilin, A. L., Kuvshinov, G. G., J. Catal. 201 (2001) 183197.Google Scholar
[21] Venugopal, A., Naveen, S., Ashok, J., Prasad, D. Hari, Kumari, V. Durga, Prasad, K.B.S., Subrahmanyam, M., International Journal of Hydrogen Energy 32 (2007) 17821788.Google Scholar
[22] Chesnokov, V. V., Chichkan, A. S., International Journal of Hydrogen Energy 34 (2009) 29792985.Google Scholar
[23] Takenaka, S., Ogihara, H., Yamanaka, I., Otsuka, K., Applied Catalysis A: General 217 (2001)101110.Google Scholar
[24] Ashok, J., Raju, G., Reddy, P. Shiva, Subrahmanyam, M., Venugopal, A., International Journal of Hydrogen Energy 33 (2010) 48094818.Google Scholar
[25] Valenzuela, M. A., Gonzalez, O., Córdova, I., Flores, S., Wang, J. A., Chemical Engineering Transactions 4 (2004) 6166.Google Scholar
[26] Guevara, J. C., Wang, J. A., Chen, L. F., Valenzuela, M. A., Salas, P., García-Ruiz, A., Toledo, J. A., Cortes-Jácome, M.A., Angeles-Chavez, C., Novaro, O., Inter. Journal of Hydrogen Energy 35 (2010) 35093521.Google Scholar
[27] Ivanov, A.V., Zausa, E., Taǎrit, Y. Ben, Essayem, N., Appl. Catal. A: Gen. 256 (2003) 225242.Google Scholar