Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T11:49:47.900Z Has data issue: false hasContentIssue false

Sustained Percolation in Stretched Silver Nanowire Networks for Stretchable Inter-Connection Applications

Published online by Cambridge University Press:  26 June 2014

Jae Sung Park
Affiliation:
School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, B.C. Canada V3T 0A3
Woo Soo Kim
Affiliation:
School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, B.C. Canada V3T 0A3
Get access

Abstract

Here we introduce a highly stretchable Printed Circuit Board (PCB) inter-connection technology achieved through the combination of flexibility allowed by the silver nanowire (AgNW)-based electrode and stretchability provided by the meander-shaped substrate. Horseshoe-shaped elastic material, polydimethylsiloxane, is used as a substrate of the AgNW conductors for relaxed stress concentration. Continuously maintained 2-D percolation of stretchable AgNW networks overcomes the usage restrictions with ordinary rigid Printed Circuit Board (PCB). The horseshoe-shaped inter-connection is physically reliable with repeated stretching/releasing processes and maintains its conductivity under tensile strains up to 20 %, allowing the durable and stretchable PCB inter-connecting applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nathan, A., Ahnood, A., Cole, M., Lee, S., Suzuki, Y., Hiralai, P., Bonaccorso, F., Hasan, T., Garrcia-Gancedo, L., Dyadyusha, A., Haque, S., Andrew, P., Hofmann, S., Moultrie, J., Chu, D., Flewitt, A., Ferrari, A., Kelly, M., Robertson, J., Amaratunga, G., Mile, W., Proc. IEEE. 100 (2012) 1486.CrossRefGoogle Scholar
Siegel, C., Phillips, S. T., Mickey, M. D., Lu, N., Suo, Z., Whitesides, G. M., Adv. Funct. Mater. 20 (2010) 28.CrossRefGoogle Scholar
Rho, S., Lee, W., Lim, J.W., Young, K., IEEE Photon. Technol. Lett. 20 (2008), 964.CrossRefGoogle Scholar
Liu, M., Chen, Q., J. Micro/Nanolithogr. MEMS MOEMS. 6 (2007), 023008.CrossRefGoogle Scholar
Kim, S. H., Moon, J.-H., Kim, J. H., Jeong, S. M., Lee, S.-H., Biomed. Eng. Lett. 1 (2011), 199.CrossRefGoogle Scholar
Liu, C.-H., Yu, X., Nanoscale Res. Lett. 6 (2008), 75.CrossRefGoogle Scholar
Xu, F., Zhu, Y., Adv. Mater. 24 (2012) 5117.CrossRefGoogle Scholar
Lee, P., Lee, J., Lee, H., Yeo, J., Hong, S., Nam, K.H., Lee, D., Lee, S.S., Ko, S.H., Adv. Mater. 24 (2012) 3326.CrossRefGoogle Scholar
Rai, T., Dantes, P., Bahreyni, B., Kim, W.S., IEEE Elect. Dev. Lett. 34 (2013) 544.CrossRefGoogle Scholar
Ryou, M.-H., Lee, Y. M., Park, J.-K., Choi, J. W., Adv. Mater. 23 (2011), 3066.CrossRefGoogle Scholar
Aktar, T., Kim, W. S., ACS Appl. Mater. Interfaces. 4 (2012), 1855.CrossRefGoogle Scholar
Yu, C., Duan, Z., Yuan, P., Li, Y., Su, Y., Zhang, X., Pan, Y., Dai, L. L., Nuzzo, R. G., Huang, Y., Jiang, H., Rogers, J. A., Adv. Mater. 25 (2013), 1541.CrossRefGoogle Scholar
Kim, Y., Zhu, J., Yeom, B., Di Prima, M., Su, X., Kim, J., Yoo, S., Uher, C., Kotov, N., Nature. 500 (2013), 59.CrossRefGoogle Scholar
Adrega, T. and Lacour, S. P., J. Micromech. Microeng. 20 (2010), 055025.CrossRefGoogle Scholar