Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T13:55:30.506Z Has data issue: false hasContentIssue false

Surface Science Investigations of Thin Metal Films on Metal and Metal Oxide Supports

Published online by Cambridge University Press:  25 February 2011

J. M. White*
Affiliation:
Department of Chemistry, University of Texas, Austin, TX 78712
Get access

Abstract

Chemisorption and catalysis on overlayer metals and metal oxides is rich and complex. Thin film model systems, suitable for UHV surface science, are attractive candidates for studying the fundamental interactions involved. In this paper, we discuss three examples: (1) O2 and N2O dissociative adsorption on Cu-covered Ru(0001), (2) molecular CO chemisorption on K-covered Ag(111), and (3) CO, H2 and NO chemisorption on clean and TiOx covered Pt and Rh. In each of these cases, evidence is presented for significant chemical interactions between the two substrate materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sinfelt, J.H., J. Phys. Chem. 90, 4711 (1986).Google Scholar
2. Shi, S.-K., Lee, H.-I. and White, J.M., Surf. Sci. 102, 56 (1980).Google Scholar
3. Roop, B., Schulz, M.A., and White, J.M., Surf. Sci. (submitted).Google Scholar
4. Belton, D.N., Sun, Y.-M. and White, J.M., J. Phys. Chem. 88, 5172 (1984).Google Scholar
5. Belton, D.N., Sun, Y.-M. and White, J.M., J. Catal. (in press).Google Scholar
6. Christmann, K., Ertl, G. and Shimizu, H., J. Catal. 61, 397 (1980).Google Scholar
7. Goodman, D.W. and Peden, C.H.F., J. Catal. 95, 321 (1985).Google Scholar
8. Yates, J.T. Jr, Peden, C.H.F. and Goodman, D.W., J. Catal. 94, 576 (1985).Google Scholar
9. Garfunkel, E.L. and Somorjai, G.A., Surf. Sci. 115, 441 (1982).Google Scholar
10. Wesner, D.A., Coenen, F.P. and Bonzel, H.P., Phys. Rev. B33, 8837 (1986).Google Scholar
11. Uram, K.J., Ng, Lily, Folman, M. and Yates, J.T. Jr, J. Chem. Phys. 84, 2891 (1986).Google Scholar
12. Lackey, D., Surman, M., Jacobs, S., Grider, D. and King, D.A., Surf. Sci. 152/153, 513 (1985).Google Scholar
13. Dubois, L.H., Zegarski, B.R. and Luftman, H.S., J. Vac. Technol. (in press).Google Scholar
14. Grant, R.B. and Lambert, R.M., Langmuir 1, 29 (1985), and references cited therein.Google Scholar
15. Tauster, S.J., Fung, S.C. and Garten, R.L., J. Am. Chem. Soc. 100, 1706 (1978).CrossRefGoogle Scholar
16. Solymosi, F., Catal. Rev. 1, 233 (1967).Google Scholar
17. Vannice, M.A. and Sudhaker, C., J. Phys. Chem. 88, 2429 (1984).Google Scholar
18. Chen, B.H. and White, J.M., J. Phys. Chem. 86, 3534 (1982).Google Scholar
19. Tauster, S.J., Fung, S.C., Baker, R.T.K. and Horsley, J.A., Science 211, 1121 (1981).Google Scholar
20. Burch, R. and Flambard, A.R., J. Catal. 78, 389 (1982).Google Scholar