Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T00:05:56.386Z Has data issue: false hasContentIssue false

Surface physical property of the CrO2 thin films prepared using a closed chemical vapor deposition method

Published online by Cambridge University Press:  07 February 2012

Y. Muraoka
Affiliation:
Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan Faculty of Science, Research Laboratory for Surface Science, Okayama University, 3-1-1 Tsushima-naka, Tsushima, Kita-ku, Okayama 700-8530, Japan
S. Yoshida
Affiliation:
Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
T. Wakita
Affiliation:
Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
M. Hirai
Affiliation:
Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan Faculty of Science, Research Laboratory for Surface Science, Okayama University, 3-1-1 Tsushima-naka, Tsushima, Kita-ku, Okayama 700-8530, Japan
T. Yokoya
Affiliation:
Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan Faculty of Science, Research Laboratory for Surface Science, Okayama University, 3-1-1 Tsushima-naka, Tsushima, Kita-ku, Okayama 700-8530, Japan
Get access

Abstract

We have examined the intrinsic surface physical property of a CrO2 thin film by means of surface sensitive photoemission spectroscopy. Epitaxial thin film of CrO2(100) has been grown on TiO2(100) by a closed chemical vapor deposition method using a Cr8O21 precursor. Low-energy electron diffraction (LEED) observations find that epitaxial growth of rutile-phase CrO2 occurs to the top monolayer of the film. Surface sensitive x-ray photoemission spectroscopy (XPS) measurements show a finite intensity in the region of the Fermi energy. The result evidences that the physical nature of near topmost layer of CrO2 thin film is metallic. Progress of understanding of the surface physical property of CrO2 thin film helps not only perform a reliable photoemission study to understand the physics of ferromagnetic metal in CrO2, but also develop the CrO2-based devices using a half-metallic nature for spintronics applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Korotin, M. A., Anisimov, V. I., Khomskii, D. I., and Sawatzky, G. A., Phys. Rev. Lett. 80,4305(1998).Google Scholar
2. Schlottmann, P., Phys. Rev. B 67, 174419 (2003).Google Scholar
3. Schwarz, K., J. Phys. F: Met. Phys. 16, L211 (1986).Google Scholar
4. Soulen, R. J. Jr., Byers, J. M., Osofsky, M. S., Nadgorny, B., Ambrose, T., Cheng, S. F., Broussard, P. R., Tanaka, C. T., Nowak, J., Moodera, J. S., Barry, A., and Coey, J. M. D., Science 282, 85 (1998).Google Scholar
5. Anguelouch, A., Gupta, A., Xiao, G., Abraham, D. W., Ji, Y., Ingvarsson, S., and Chien, C. L., Phys. Rev. B 64, 180408 (2001).Google Scholar
6. Dedkov, Y. S., Vinogradov, A. S., Fonin, M., König, C., Vyalikh, D. V., Preobrajenski, A. B., Krasnikov, S.A., Kleimenov, E. Y., Nesterov, M. A., Rüdiger, U., Molodtsov, S. L., and Güntherodt, G., Phys. Rev. B 72, 060401(R) (2005).Google Scholar
7. Chang, C. F., Huang, D. J., Tanaka, A., Guo, G. Y., Chung, S. C., Kao, S.– T., Shyu, S. G., and Chen, C. T., Phys. Rev. B 71, 052407 (2005).Google Scholar
8. Ventrice, C. A. Jr, Borst, D. R., Geisler, H., van Ek, J., Losovji, Y. B., Robbert, P. S., Diebold, U., Rodriguez, J. A., Miao, G. X., and Gupta, A., J. Phys.: Condens. Matter 19, 315207 (2007).Google Scholar
9. Cheng, R., Xu, B., Borca, C. N., Sokolov, A., Yang, C.– S., Yuan, L., Liou, S.– H., Doudin, B., and Dowben, P. A., Appl. Phys. Lett. 79, 3122 (2001).Google Scholar
10. Ivanov, P. G., Watts, S. M., and Lind, D. M., J. Appl. Phys. 89, 1035 (2001).Google Scholar
11. Ivanov, P. G., and Bussmann, K. M., J. Appl. Phys. 105, 07B107 (2009).Google Scholar
12. Iwai, K., Muraoka, Y., Wakita, T., Hirai, M., Yokoya, T., Kato, Y., Muro, T., and Tamenori, Y., J. Appl. Phys. 108, 043916 (2010).Google Scholar
13. Li, X. W., Gupta, A., McGuire, T. R., Duncombe, P. R., and Xiao, G., Appl. Phys. Lett. 85, 5585 (1999).Google Scholar
14. Stampe, P. A., Kennedy, R. J., Watts, S. M., and Molnár, S. V., J. Appl. Phys. 89, 7696 (2001).Google Scholar
15. Hüfner, S., Photoelectron Spectroscopy, Springer, Berlin, 2003.Google Scholar
16. Rao, C., and Raveau, B., Transitional Metal Oxides, VHC, New York, 1995.Google Scholar