Published online by Cambridge University Press: 10 February 2011
Utilizing a chemical transport reaction, we succeeded in growing large and clean anatase TiO2 single crystals whose surfaces could be characterized by standard physical and electro-chemical techniques. The examination of the structure of the clean (101) and (001) faces by low energy electron diffraction (LEED) and secondary electron imaging (SEI) showed that these surfaces are bulk terminated and thermodynamically stable. Impedance spectroscopy in aqueous solution revealed a slight difference in the flatband potential between the (101) and the (001) faces. This shift is also manifested in a different photocurrent onset potential and can be rationalized by a different water adsorption on the two surface structures. Voltammetry in aprotic solutions showed a different lithium insertion behavior for the two surfaces. This is explained by a different structural transparency of the anatase lattice in the two directions. Both findings favor the (001) over the (101) surface. These orientational dependencies may have some important technological relevance for the mesoscopic TiO2 films used in solar cells and lithium batteries.