Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T13:42:07.071Z Has data issue: false hasContentIssue false

Surface Cleaning, Topography, and Temperature Measurements of Single Crystal Diamond

Published online by Cambridge University Press:  21 February 2011

Mark P. D'Evelyn
Affiliation:
General Electric Corporate Research and Development, P.O. Box 8, Schenectady, NY 12301 and Departments of Chemistry and Materials Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180–3590
Lisa M. Struck
Affiliation:
Department of Chemistry and Rice Quantum Institute, Rice University, Houston, TX 77251–1892
Robin E. Rawles
Affiliation:
Department of Chemistry and Rice Quantum Institute, Rice University, Houston, TX 77251–1892
Get access

Abstract

Application of surface science methods to single crystal diamond surfaces requires the preparation of clean, well-ordered surfaces and accurate measurement of substrate temperature. Cleaning of diamond (100) in H2SO4/HNO3/HClO4 produced several infrared absorption features between 1025 and 1275 cm-1, as observed by infrared multiple-internal-reflection spectroscopy. These modes are assigned to surface hydroxyl and bridge-bonded oxygen. Heating an oxidized surface to ca. 1130 °C caused disappearance of a surface hydroxyl mode centered at 1080 cm-1. We show by atomic force microscopy that an as-polished diamond (100) sample is covered by grooves and ridges several nm in height, implying a modest density of atomic steps. The surface of a diamond that underwent etching via numerous adsorption/desorption experiments in ultrahigh vacuum and was acid cleaned several times was essentially unchanged, indicating a minimal perturbation of the surface topography. The capability of Fizeau interferometry for accurate measurement of single-crystal diamond temperatures is demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Marsh, J. B. and Farnsworth, H. E., Surf. Sci. 1, 3 (1964).Google Scholar
2. Lune, P. G. and Wilson, J. M., Surf. Sci. 65, 453 (1977).Google Scholar
3. Vidali, G. and Franki, D. R., Phys. Rev. B 27, 2480 (1983).Google Scholar
4. Pate, B., Surf. Sci. 165, 83 (1986).Google Scholar
5. (a) Hamza, A. V., Kubiak, G. D., and Stulen, R. H., Surf. Sci. 206, L833 (1988);Google Scholar
(b) Hamza, A. V., Kubiak, G. D., and Stulen, R. H., Surf. Sci. 237, 35 (1990);Google Scholar
Kubiak, G. D., Schulberg, M. T., and Stulen, R. H., Surf. Sci., 277, 234 (1992).Google Scholar
6. Yang, Y. L., Struck, L. M., Sutcu, L. F., and D'Evelyn, M. P., Thin Solid Films 225, 203 (1993).Google Scholar
7. Struck, L. M. and D'Evelyn, M. P., J. Vac. Sci. Technol. A 11, 1992 (1993).Google Scholar
8. Couto, M., van Enckevort, W. J. P., Wichman, B., and Seal, M., Appl. Surf. Sci. 62, 263 (1992).Google Scholar
9. Thomas, R. E., Rudder, R. A., and Markunas, R. J., J. Vac. Sci. Technol. A 10, 2451 (1992).Google Scholar
10. Lander, J. J. and Morrison, J., Surf. Sci. 4, 241 (1966).Google Scholar
11. Mitsuda, T., Yamada, T., Chuang, T. J., Seki, H., Chin, R. P., Huang, J. Y., and Shen, Y. R., Surf. Sci. 257, L633 (1991).Google Scholar
12. Lee, S.-T. and Apal, G., Phys. Rev. B 48, 2684 (1993).Google Scholar
13. (a) Ando, T., Inoue, S., Ishii, M., Kamo, M., Sato, Y., Yamdada, O., and Nakano, T., J. Chem. Soc. Faraday Trans. 89, 749 (1993);Google Scholar
(b) Ando, T., Ishii, M., Kamo, M., and Sato, Y., J. Chem. Soc. Faraday Trans. 89, 1783 (1993).Google Scholar
14. Pehrsson, P. E., in Diamond Materials, edited by Dismukes, J. P. and Ravi, K. V. (The Electrochemical Society, Pennington, New Jersey, 1993), p. 668.Google Scholar
15. Yang, Y. L., PhD. Dissertation, Department of Chemistry, Rice University, 1992 (unpublished).Google Scholar
16. Smentkowski, V. S. and Yates, J. T. Jr, J. Vac. Sci. Technol. A 11, 3002 (1993).Google Scholar
17. Struck, L. M., PhD. Dissertation, Department of Chemistry, Rice University, 1993 (unpublished).Google Scholar
18. Prins, J. F., J. Phys. D: Appl. Phys. 22, 1562 (1989).Google Scholar
19. Broxton, T. J., Deady, L. W., Kendall, M., and Topsom, R. D., Appl. Spectrosc. 25, 600 (1971).Google Scholar
20. Frisch, M. J., Trucks, G. W., Head-Gordon, M., Gill, P. M. W., Wong, M. W., Foresman, J. B., Johnson, B. G., Schlegel, H. B., Robb, M. A., Replogle, E. S., Gomperts, R., Andres, J. L., Raghavachari, K., Binkley, J. S., Gonzalez, C., Martin, R. L., Fox, D. J., Defrees, D. J., Baker, J., Stewart, J. J. P., and Pople, J. A., Gaussian 92, Revision A, (Gaussian, Inc., Pittsburgh, 1992).Google Scholar
21. (a) Matsumoto, S., Kanda, H., Sato, Y., and Setaka, N., Carbon 15, 299 (1977);Google Scholar
(b) Matsumoto, S. and Setaka, N., Carbon 17, 485 (1979).Google Scholar
22. Seal, M., Proc. Roy. Soc. London A 248, 379 (1958).Google Scholar
23. (a) Tsuno, T., Imai, T., Nishibayashi, Y., Hamada, K., and Fujimori, N., Jpn. J. Appl. Phys. 30, 1063 (1991);Google Scholar
(b) Tsuno, T., Tomikawa, T., Shikata, S.-I., Imai, T., and Fujimori, N., Appl. Phys. Lett. 64, 572 (1994).Google Scholar
24. Sutcu, L. F., Chu, C. J., Thompson, M. S., Hauge, R. H., Margrave, J. L., and D'Evelyn, M. P., J. Appl. Phys. 71, 5930 (1992).Google Scholar
25. Janssen, G., van Enckevort, W. J. P., Vollenberg, W., and Giling, L. J., Dia. Relat. Mater. 1, 789 (1992).Google Scholar
26. Posthill, J. B., Malta, D. P., Rudder, R. A., Hudson, G. C., Thomas, R. E., Markunas, R. J., Humphreys, T. P., and Nemanich, R. J., in Diamond Materials, edited by Dismukes, J. P. and Ravi, K. V. (The Electrochemical Society, Pennington, New Jersey, 1993), p. 303.Google Scholar
27. Everson, M. P., Tamor, M. A., Scholl, D., Stoner, B. R., Sahaida, S. R., and Bade, J. P., J. Appl. Phys. 75, 169 (1994).Google Scholar
28. Ravi, K. V., Oden, P. I. and Yaniv, D. R., in Diamond Materials, edited by Dismukes, J. P. and Ravi, K. V. (The Electrochemical Society, Pennington, New Jersey, 1993), p. 766.Google Scholar
29. Rawles, R. E., Kittrell, C., and D'Evelyn, M. P., in Diamond Materials, ed. by Dismukes, J. P. and Ravi, K. V. (The Electrochemical Society, Pennington, New Jersey, 1993), p. 269.Google Scholar
30. Pan, C., Chu, C.J., Margrave, J. L., and Hauge, R. H., submitted to Diamond and Related Materials.Google Scholar
31. Slack, G. A. and Bartram, S. F., J. Appl. Phys. 46, 89 (1975).Google Scholar
32. Fontanella, J., Johnston, R. L., Colwell, J. H., and Andeen, C., Appl. Optics 16, 2949 (1977).Google Scholar