Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T00:36:09.075Z Has data issue: false hasContentIssue false

Superconducting Parent Compound Pr2CuO4 Achieved by Special Post-Reduction

Published online by Cambridge University Press:  26 January 2011

Hideki Yamamoto
Affiliation:
NTT Basic Research Laboratories., NTT Corporation, Atsugi-shi, Kanagawa, 243-0198, Japan
Osamu Matsumoto
Affiliation:
Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, 184-8588, Japan
Keitaro Yamagami
Affiliation:
NTT Basic Research Laboratories., NTT Corporation, Atsugi-shi, Kanagawa, 243-0198, Japan
Michio Naito
Affiliation:
Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, 184-8588, Japan
Yoshiharu Krockenberger
Affiliation:
NTT Basic Research Laboratories., NTT Corporation, Atsugi-shi, Kanagawa, 243-0198, Japan
Get access

Abstract

It is commonly believed that the parent compounds of high-Tc cupratres are, universally, charge transfer insulators and triggered by Mott physics. In our experiments using metal-organic decomposition (MOD), however, accumulating evidences show that the parent compounds of “electron-doped” superconductors, RE2-xCexCuO4 [RE = rare earth ion] with x = 0, are not Mott insulators but superconductors [1-5]. They have a Tc of 30 K and crystallize in the Nd2CuO4 (T’) structure. Most likely, the sharp contradiction between our results and commonly achieved data originates from the complicated oxygen chemistry in these materials. The as-synthesized specimens contain a fair amount of impurity interstitial oxygen. Throughout the reduction process it is required to remove exclusively impurity oxygen while preserving regular oxygen site occupied in order to obtain superconductivity. With decreasing x the constraints of the reduction process are getting more tight. In this study, we systematically investigated the post-annealing process using MBE-grown T’-Pr2CuO4 films. The MBE films were reduced ex-situ in a tubular furnace following a specially designed 2-step process, as in the case of MOD films. The films were annealed at Ta = 700 - 850°C in a reducing atmosphere (PO2 = 2 x 10−5 − 2 x 10−3 atm) and finally reduced at a lower temperature Tred = 450 – 700°C under vacuum (< 10−4 Torr). The film properties systematically changed with Ta, PO2, and Tred. The optimized Tred varies from 475°C to 650°C mainly depending on Ta, since the microstructure and grain size of the films are determined by Ta. Optimal superconducting properties are Tc of 26 K, while ρ(300 K) = 250 μΩcm, and RRR ~ 10. We believe the combination of thin-film synthesis and specially designed post-reduction process enabled us to obtain nearly intact CuO2 planes. Samples prepared by above-mentioned method unveiled the intrinsic properties of the parent compounds, which are not triggered by Mott physics. This result also agrees with the recent calculation result indicating the parent compounds with T’ structure are not charge transfer insulators [6-8].

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Matsumoto, O., Utsuki, A., Tsukada, A., Yamamoto, H., Manabe, T., Naito, M., Phys. Rev. B 79, 100508(R) (2009).Google Scholar
2. Matsumoto, O., Tsukada, A., Yamamoto, H., Manabe, T., Naito, M., Physica C 468, 1148 (2008).Google Scholar
3. Naito, M., Matsumoto, O., Utsuki, A., Tsukada, A., Yamamoto, H., Manabe, T., J. Phys. CS 108, 012037 (2008).Google Scholar
4. Matsumoto, O., Utsuki, A., Tsukada, A., Yamamoto, H., Manabe, T., Naito, M., Physica C 469, 924 (2009); ibid, 469, 940(2009).Google Scholar
5. Matsumoto, O., Tsukada, A., Yamamoto, H., Manabe, T., Naito, M., Physica C 470, 1029 (2010).Google Scholar
6. Das, H., Saha-Dasgupta, T., Phys. Rev. B 79, 134522 (2009).Google Scholar
7. Weber, C., Haule, K., Kotliar, G., Nat. Phys. 6, 574 (2010).Google Scholar
8. Weber, C., Haule, K., Kotliar, G., Phys. Rev. B 82, 125107 (2010).Google Scholar
9. Maier, J., Nat. Mater. 4, 805 (2005).Google Scholar
10. Uchida, S., J. Phys. Soc. Jpn. Suppl. C 77, 9 (2008).Google Scholar
11. Hosono, H., Physica C 469, 314 (2009).Google Scholar
12. Maple, M. B., MRS Bulletin 15, 6067 (1990).Google Scholar
13. Takagi, H., Ido, T., Ishibashi, S., Uota, M., Uchida, S., Tokura, Y., Phys. Rev. B 40, 2254 (1989).Google Scholar
14. Brinkmann, M., Rex, T., Bach, H., Westerholt, K., Phys. Rev. Lett. 74, 4927 (1995).Google Scholar
15. Brinkmann, M., Bach, H., Westerholt, K., Physica C 292, 104 (1997).Google Scholar
16. Yamada, T., Kinoshita, K., Shibata, H., Jpn. J. Appl. Phys. 33, L168 (1994).Google Scholar
17. Koike, Y., Kakimoto, A., Mochida, M., Sato, H., Noji, T., Kato, M., Saito, Y., Jpn. J. Appl. Phys. 31, 2721 (1992).Google Scholar
18. Naito, M., Hepp, M., Jpn. J. Appl. Phys. 39, L485 (2000).Google Scholar
19. Sawa, A., Kawasaki, M., Takagi, H., Tokura, Y., Phys. Rev. B 66, 014531 (2002).Google Scholar
20. Li, S., Chi, S., Zhao, J., Wen, H. –H., Stone, M. B., Lynn, J. W., Dai, P., Phys. Rev. B 78, 014520 (2008).Google Scholar
21. Richard, P., Neupane, M., Xu, Y. -M., Fournier, P., Li, S., Dai, P., Wang, Z., Ding, H., Phys. Rev. Lett. 99, 157002 (2007).Google Scholar
22. Brinkmann, M., Rex, T., Markus, S., Bach, H., Westerholt, K., Physica C 269, 7682 (1996).Google Scholar
23. Yamamoto, H., Tukada, A., Matsumoto, O., Naito, M., Physica C, doi:10.1016/j.physc.2009.10.077 (2009).Google Scholar
24. Tsukada, A., Krockenberger, Y., Noda, M., Yamamoto, H., Manske, D., Alff, L., Naito, M., Solid State Commun. 133, 427431 (2005).Google Scholar
25. Yu, W., Ling, B., Li, P., Fujino, S., Murakami, T., Takeuchi, I., Greene, R. L., Phys. Rev. B 75, 020503 (R) (2007).Google Scholar
26. Zhao, L., Wu, G., Liu, R. H., Chen, X. H., Appl. Phys. Lett. 90, 072503 (2007).Google Scholar
27. Naito, M., Sato, H., Yamamoto, H., Physica C 293, 36 (1997).Google Scholar
28. Kim, M. -S., Skinta, J. A., Lemberger, R., Tsukada, A., Naito, M., Phys. Rev. Lett. 91 087001 (2003).Google Scholar