Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T04:23:55.286Z Has data issue: false hasContentIssue false

Study of the Uranium Heterogeneous Diffusion through Crystalline Rocks and Effects of the “Clay-Mediated” Transport

Published online by Cambridge University Press:  01 February 2011

U. Alonso
Affiliation:
CIEMAT, Avda. Complutense 22, Edif. 19, 28040 Madrid, SPAIN
T. Missana
Affiliation:
CIEMAT, Avda. Complutense 22, Edif. 19, 28040 Madrid, SPAIN
M. García-Gutiérrez
Affiliation:
CIEMAT, Avda. Complutense 22, Edif. 19, 28040 Madrid, SPAIN
A. Patelli
Affiliation:
LNL - INFN, Via dell' Università 2, 35020 Legnaro-Padova, ITALY
J. Ravagnan
Affiliation:
LNL - INFN, Via dell' Università 2, 35020 Legnaro-Padova, ITALY
V. Rigato
Affiliation:
LNL - INFN, Via dell' Università 2, 35020 Legnaro-Padova, ITALY
Get access

Abstract

Rock matrix diffusion is one of the possible mechanisms for radionuclide retardation in a deep geological high-level radioactive waste repository, and it is usually considered that radionuclides diffuse as solutes through the rock. Nonetheless, the potential effects that clay, from the bentonite barrier, may induce on the radionuclides migration should be taken into account. Furthermore, transport models generally assume that the whole mineral surface is accessible to transport, whereas transport is highly conditioned by the heterogeneous mineral distribution, since different minerals may act as preferential pathways, while others may present higher sorption capability. It is therefore necessary to determine the actual surface area accessible to transport.

The aim of the present work is the identification of the uranium preferential pathways to the granite, both in presence or absence of bentonite clay. Results showed that uranium as solute diffused in specific mineral areas, indicating that the actual surface area accessible to matrix diffusion, and/or sorption on the surface, is significantly lower than the whole mineral surface. By the other hand, the uranium in presence of the clay was randomly distributed on the surface, and penetrated into the granite mainly through “defects” (as fractures or grain boundaries); its migration being enhanced on specially fractured or disturbed areas.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Astudillo, J. Publicación técnica ENRESA, ISBN-84–931224–4–0 (2001).Google Scholar
2. Zimmerman, M.D., Bennet, P.C., Sharp, J.M. Choi, W-J. J. of Cont Hydrol. 58, 5177 (2002).Google Scholar
3. Wörman, A., Xu, S., Dverstorp, B. J. of Cont Hydr. 60, Iss.1–4, 163191 (2003).Google Scholar
4. Freedman, V.L., Saripalli, K.P., Meyer, P.D. Appl. Geochem. 18, 589606 (2003).Google Scholar
5. Siitar-Kauppi, M., Hellmuth, K.-H, Linberg, A., Huitti, T. Radiochim. Acta 66/67, 409414 (1994).Google Scholar
6. Alonso, U., Missana, T., Patelli, A., Rigato, V., Rivas, P. J. of Cont. Hydrol. V.61. Iss. 1–4, 95 (2003).Google Scholar
7. Missana, T. Alonso, U., Turrero, M-J. J. of Cont. Hydrol. V.61. Iss. 1–4, pp. 1731 (2003).Google Scholar
8. Toulhoat, N., Potocek, V., Neskovic, C, Radiochim. Acta, 74, 257262, (1996).Google Scholar
9. Misaelides, P., Godelitsas, A., Stephan, A., Meijer, J., Rolfs, C, Harissopoulos, S., Kokkoris, M., Filippidis, A. Radiochim. Acta 83, 4348 (1998).Google Scholar
10. Ohnuki, T., Kozai, N., Isobe, H. Murakami, T., Yamamoto, S., Aoki, Y., Naramoto, H. J. of Nucl. Sci. and Teen. 34, No. 1, 5862, (1997).Google Scholar
11. Dran, J-C, Moulin, V., Petit, J-C, Ramsay, J.D.F., Russel, P., Stefanini, A., Appl. Geochem. Suppl. Issue N1, 187191, (1992).Google Scholar
12. Dran, J.C., Della Mea, G., Moulin, V., Petit, J.C., Rigato, V. Radiochim. Acta 66/67, 221227, (1994).Google Scholar
13. Bradbury, M.H., Ed. NAGRA Technical Report, 88–23 (1989).Google Scholar
14. Buil, B. Publicacion Técnica ENRESA 07/2002 (2002).Google Scholar
15. Huertas, F. et al. FEBEX Project EC Final Report. EUR19147EN (2000).Google Scholar
16. Sharma, A., Kumar, S., Sharma, S.K., Diwan, P.K., Nath, N., Mittal, V.K., Ghosh, S., Avasthi, D.K. Nucl. Instr. and Meth. B, 170, 323328, (2000).Google Scholar
17. Cristofalini, R., Egeni, G.P., Lo Giudice, A., Pappalardo, L., Rossi, P., Rudello, V., Viviani, M. Nucl. Instr. and Meth. B, 140, Iss 1–2, 185190, (1998).Google Scholar
18. Vieno, T., Nordman, H., Posiva Technical Report, 99–07 (1999).Google Scholar
19. Yamaguchi, T., Sakamoto, Y., Nakayama, S., Vandergraaf, T. J. of Cont. Hydrol. 26, 109117 (1997).Google Scholar
20. Berry, J.A., Bishop, H.E., Cowper, M.M., Fozard, P.R. Radiochim. Acta. 66/67, 243250, (1994).Google Scholar