Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T05:39:00.394Z Has data issue: false hasContentIssue false

Study of the Synthesis of Mullite From Kaolin-α-Al2O3 and Kaolin-Al(NO3)3

Published online by Cambridge University Press:  20 December 2012

E. M. Lozada*
Affiliation:
Centro de Investigaciones en Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo km 4.5, C.P. 42184, Mineral de la Reforma, Hidalgo, México.
O. Alanís
Affiliation:
Centro de Investigaciones en Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo km 4.5, C.P. 42184, Mineral de la Reforma, Hidalgo, México.
F. Legorreta
Affiliation:
Centro de Investigaciones en Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo km 4.5, C.P. 42184, Mineral de la Reforma, Hidalgo, México.
L. E. Hernández
Affiliation:
Centro de Investigaciones en Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo km 4.5, C.P. 42184, Mineral de la Reforma, Hidalgo, México.
Get access

Abstract

The synthesis of mullite from kaolin clay and two precursors of aluminum: α-Al2O3 and Al(NO3)3 was investigated. In order to study the temperature effect, the system kaolin-α-Al2O3 was calcined in air in a range of 1200 to 1500°C, for 2 h. For the system kaolin-Al(NO3)3, the combustion method was employed, using urea as fuel, and calcined in air at 1500°C for 2 h. The products were characterized by X-ray diffraction, scanning electronic microscopy (SEM), energy dispersive spectroscopy and particle size analysis in order to analyze and compare their morphology and structure. The crystallographic study revealed an incomplete reaction between the kaolin and the α-Al2O3. Nevertheless, in the system kaolin-Al(NO3)3, it was obtained mullite with high purity and trace amounts of cristobalite.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aksay, I. H., Dabbs, D. M. and Sarikaya, M., J. Amer. Ceram. Soc. 74, 2343 (1991).CrossRefGoogle Scholar
Marple, B. R. and Green, D.J., J. Amer. Ceram. Soc. 71, C471 (1998).CrossRefGoogle Scholar
Kanka, B. and Schneider, H., J. Mat. Sci. 29, 1239 (1994).CrossRefGoogle Scholar
Sacks, M. D., Wang, K., Scheiffele, G. W. and Bozkurt, N., J. Amer. Ceram. Soc. 80, 663 (1997).CrossRefGoogle Scholar
Kanka, B. J. and Schneider, H., J. Europ. Ceram. Soc. 20, 619 (2005).CrossRefGoogle Scholar
Celloti, G., Morettini, I. and Ortelli, G., Mater. Sci. 18, 1005 (1983).CrossRefGoogle Scholar
Scheneider, H. and Komarneni, S.: Mullite (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 2005).CrossRefGoogle Scholar
Chen, C.Y., Lan, G.S. and Tuan, W.H., J. Eur. Ceram. Soc. 20, 2519 (2000).CrossRefGoogle Scholar
Ebadzadeh, T., Sarrafi, M. H. and Salahi, E., Ceram. Int. 35, 3175 (2009).CrossRefGoogle Scholar
Simendic, B. and Radonjic, L., J. Therm. Anal. Cal. 56, 199 (1999).CrossRefGoogle Scholar
Dolgikh, S. G., Karklit, A. K., Migal, V. P. and Karas, G. A., Refractories. 36, 65 (1995).CrossRefGoogle Scholar
Okada, K. and Otsuka, N., J. Am. Ceram. Soc. 69, 652 (1986).CrossRefGoogle Scholar
Pask, J. A. and Tomsia, A. P., J. Am. Ceram. Soc. 74, 2367 (1991).CrossRefGoogle Scholar
Zhang, Y., Xiao, C. and Yang, J., J. Sol-Gel Sci Technol. 57, 142 (2011).CrossRefGoogle Scholar
Lee, W.E. and Rainforth, W.M., Ceramic Microstructures and Property Control by Processing (Chapman & Hall, London, UK, 1994).Google Scholar
Legorreta-García, F., Hernández-Cruz, L. E., Mata-Muñoz, P. F.: Rev. Latinoam. Metal. Mat. Accepted on October 2012.Google Scholar