Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T23:41:57.418Z Has data issue: false hasContentIssue false

Study of the Buried Interface Behavior of Liquid Crystal Thin Films Using Synchrotron Radiation and Grazing Incidence x-ray Scattering Mode

Published online by Cambridge University Press:  10 February 2011

Y. Hu
Affiliation:
Department of Materials and Nuclear Engineering, University of Maryland, College Park, MD 20742, yufeihu@eng.umd.edu
L.J. Martínez-Miranda
Affiliation:
Department of Materials and Nuclear Engineering, University of Maryland, College Park, MD 20742, yufeihu@eng.umd.edu
Get access

Abstract

We have used the intensity and tunability of a synchrotron x-ray source in order to access the buried interface between a glass substrate and a liquid crystal thin film. We find that for energy of 9.4kev, the x-rays can penetrate a 0.22mm substrate. Grazing Incidence x-ray Scattering has been used to study the alignment of the films as a function of depth and temperature. Our results indicate the presence of both a chevron structure and a structure similar to the helical twist-grainboundary (TGB) phase. Some films have a disordered interfacial layer. This technique can be applied in the study of semiconductor devices as well as surfactant film interfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Marra, W. C., Eisenberger, P., and Cho, A. Y., J. Appl. Phys. 50, 6927(1979).10.1063/1.325845Google Scholar
2. Bohr, J., Feidenhans'l, R., Nielson, M., Toney, M., Johnson, R., and Robinson, I., Phys. Rev. Lett. 54, 1275(1985).10.1103/PhysRevLett.54.1275Google Scholar
3. Marra, M., Fuoss, P., and Eisenberger, P., Phys. Rev. Lett. 49, 1169(1982).10.1103/PhysRevLett.49.1169Google Scholar
4. Toney, M. and Huang, T., J. Mater. Res. 3, 351(1988).10.1557/JMR.1988.0351Google Scholar
5. Rieker, T. P., Clark, N. A., Smith, G. C., Parmar, D. S., Sirota, E. B. & Safinya, C., Phys. Rev. Lett. 59, 2658(1987).10.1103/PhysRevLett.59.2658Google Scholar
6. Patel, J.S., Phys. Rev. E 49, R3594 (1994).10.1103/PhysRevE.49.R3594Google Scholar
7. Kralj, S. and Zumer, S., Phys. Rev. E 54, 1610(1996).10.1103/PhysRevE.54.1610Google Scholar
8. Martinez-Miranda, L. J., Hu, Y. and Misra, T., Mol. Cryst. Liq. Cryst. 329, 121(1999).10.1080/10587259908025932Google Scholar
9. Lubensky, T.C. and Renn, S.R., Phys. Rev. A, 41, 4392 (1990).10.1103/PhysRevA.41.4392Google Scholar
10. Hu, Y. and Martinez-Miranda, L. J., MRS 1998 symposium.Google Scholar