Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T08:07:41.217Z Has data issue: false hasContentIssue false

Study of lithium defects in lithium phosphate and in the interface with metallic Li

Published online by Cambridge University Press:  18 March 2013

Santosh KC
Affiliation:
Department of Materials Science & Engineering, The University of Texas at Dallas, Richardson, Texas 75080, USA
Ka Xiong
Affiliation:
Department of Materials Science & Engineering, The University of Texas at Dallas, Richardson, Texas 75080, USA
Roberto C. Longo
Affiliation:
Department of Materials Science & Engineering, The University of Texas at Dallas, Richardson, Texas 75080, USA
Kyeongjae Cho*
Affiliation:
Department of Materials Science & Engineering, The University of Texas at Dallas, Richardson, Texas 75080, USA
Get access

Abstract

Using first-principles calculations, we investigate lithium vacancy and interstitial defects in lithium phosphate (γ-Li3PO4) and in its interface with metallic Li. We find that γ-Li3PO4 is good electronic insulator with a wide band gap of 6 eV. The calculated formation energies of Li vacancies are higher than those of Li interstitials, which indicate that the ionic conductivity is determined by the migration of Li interstitial defects in bulk electrolyte. The Li vacancy-interstitial pair defect formation energy in the Li/γ-Li3PO4 interface is comparable to the sum of Li vacancy defect at the electrode and Li ion interstitial defect in the electrolyte. Our calculation indicates that the low ionic conductivity of Li/electrolyte interface is associated with the high Li ion defect formation energy. Our study provides some useful insights on Li defect formation and migration mechanisms at the electrode-electrolyte interface and, hence, a research direction for designing future Li-ion batteries.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Armand, M. and Tarascon, J. M., Nature, 451, 652 (2008).CrossRefGoogle Scholar
Patil, A., Patil, V., Shin, D. W., Choi, J. W., Paik, D. S., and Yoon, S. J., Material Research Bulletin, 43, 19131942, (2008).CrossRefGoogle Scholar
Ribes, M., in: James, R., Akridge, , Balkanski, Minko (Eds.), Solid State Microbatteries, Plenum Press, pp. 4158, (1990).CrossRefGoogle Scholar
Zaghib, K., Charest, P., Guerfi, A., Shim, J., Perrier, M., Striebel, K., Journal of Power Sources, 134, 124129, (2004).CrossRefGoogle Scholar
Bates, J. B., Dudney, N. J., Gruzalski, G. R., Zuhr, R. A., Choudhury, A., Luck, D. F., and Robertson, J. D., Solid State Ionics 647 (1992) 5356.Google Scholar
Goodenough, J. B., Solid State Ionics, 94, 1725, (1997).CrossRefGoogle Scholar
Holzwarth, N.A.W. et al. ., Journal of Power Sources 196 (2011).CrossRefGoogle Scholar
Ivanov-Shitz, A. K., Kireev, V.V., Melnikov, O.K., and Demainets, L.N., Crystallography Reports, 46 (5) (2001) 864867.CrossRefGoogle Scholar
Hu, Y.-W., Raistrick, I. D., and Huggins, R. A., J. Electrochem. Soc. 124 (1977) 1240.CrossRefGoogle Scholar
Kotobuki, M., Suzuki, Y., Munakata, H., Kanamura, K., Sato, Y., Yamamoto, K., Yoshida, T., Electrochimica Acta 56 (2011) 10231029.CrossRefGoogle Scholar
Park, M. et al. . Journal of Power Sources 195 79047929, (2010).CrossRefGoogle Scholar
Kresse, G., Furthmuller, J., J. Comput. Mater. Sci. 6 (1) (1996) 1550.CrossRefGoogle Scholar
Hohenberg, P. and Kohn, W., Phys. Rev. 136 (1964) B864.Google Scholar
Kresse, G., Hafner, J. Phys. Rev.B, 47 (1993), p. 558 CrossRefGoogle Scholar
Perdew, J.P., Burke, K., Ernzerhof, M. Phys. Rev. Lett., 77 (1996), p. 3865 CrossRefGoogle Scholar
Jonsson, H., Mills, G., Jacobsen, K. W., Classical and Quantum Dynamics in Condensed Phase Simulations, World Scientific, Singapore, (1998).Google Scholar
Xu, Y. N., Ching, W. Y., and Chiang, Y. M., J. Appl. Phys. 95 (2004) 6583.CrossRefGoogle Scholar
Van de Walle, C. G., Neugebauer, J., J. Appl. Phys. 95 8 (2004) 15.CrossRefGoogle Scholar
Wang, B., Chakoumakos, B. C., Sales, B. C., Kwak, B. S., and Bates, J. B., J. Solid State Chem., 115, 313 (1995).CrossRefGoogle Scholar
Huggins, R. A., Electrochim. Acta, 22, 773 (1977).CrossRefGoogle Scholar
Kuwata, N., Iwagami, N., Tanji, Y., Matsuda, Y., and Kawamura, J., J. Electrochem. Soc. 157 4 (2010) A521A527.CrossRefGoogle Scholar