Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T13:36:23.897Z Has data issue: false hasContentIssue false

Study of Ion Bombardment-Induced SubSurface Compositional Modifications in Ni-Cu Alloys at Elevated Temperatures by Ion Scattering Spectroscopy

Published online by Cambridge University Press:  25 February 2011

N. Q. Lam
Affiliation:
Materials Science and Technology Division, Argonne National Laboratory, Argonne, IL 60439
H. A. Hoff
Affiliation:
Materials Science and Technology Division, Argonne National Laboratory, Argonne, IL 60439
H. Wiedersich
Affiliation:
Materials Science and Technology Division, Argonne National Laboratory, Argonne, IL 60439
L. E. Rehn
Affiliation:
Materials Science and Technology Division, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

Changes in the subsurface composition of Ni-40 at.% Cu alloys during 3-keV Ne+ bombardment at temperatures between 25 and 700°C were studied by means of ion scattering spectroscopy.Both the time evolution of the composition in the surface atom layer during ion bombardment and subsurface concentration profiles after rapid specimen cooling to room temperature were measured as a function of temperature. Radiation-enhanced diffusion coefficients were derived from the effective altered-layer thicknesses obtained. A comparison of the experimental measurements with theoretical calculations based on a phenomenological model enabled the identification of processes and kinetics responsible for subsurface compositional modifications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Betz, G., Surface Sci. 92, 283 (1980).Google Scholar
2. Kelly, R., in: Symposium on Sputtering, eds. Varga, P., Betz, G. and Vieböck, F. P. (Institut für Allgemeine Physik, Vienna 1980) p. 390.Google Scholar
3. Andersen, H. H., in: Physics of Ionized Gases (SPIG 1980), ed. Matić, M. (Boris Kidrić Institute of Nuclear Sciences, Beograd, Yugoslavia, 1980) p. 421.Google Scholar
4. Lam, N. Q. and Wiedersich, H., J. Nucl. Mater. 103 & 104, 433 (1981).Google Scholar
5. Lam, N. Q. and Wiedersich, H., Rad. Effects Lett. 67, 107 (1982).Google Scholar
6. Lam, N. Q. and Wiedersich, H., Mat. Res. Soc. Symp. Proc. 7, 35 (1982).Google Scholar
7. Shimizu, H., Ono, M. and Nakayama, K., J. Appl. Phys. 46, 460 (1975).Google Scholar
8. Rehn, L. E., Danyluk, S. and Wiedersich, H., Phys. Rev. Lett. 43, 1764 (1979).Google Scholar
9. Rehn, L. E. and Wiedersich, H., Thin Solid Films 73, 139 (1980).Google Scholar
10. Shikata, M. and Shimizu, R., Surface Sci. 97, L363 (1980).Google Scholar
11. Shimizu, H., Ono, M., Koyama, N. and Ishida, Y., J. Appl. Phys. 53, 3044 (1982).Google Scholar
12. Rehn, L. E., Boccio, V. T. and Wiedersich, H., Surface Sci. 128, 37 (1983).Google Scholar
13. Swartzfager, D. G., Ziemecki, S. B. and Kelley, M. J., J. Vac. Sci. Technol. 19, 185 (1981).Google Scholar
14. Andersen, H. H., Stenum, B., Sørensen, T., and Whitlow, H. J., Nucl. Instr. and Meth. (to be published).Google Scholar
15. Andersen, H. H. and Bay, H. L., in: Sputtering by Particle Bombardment, ed. Behrisch, R. (Springer, Heidelberg, 1981) p. 145.Google Scholar
16. Biersack, J. P. and Haggmark, L. G., Nucl. Instr. and Meth. 174, 257 (1980).Google Scholar
17. Lam, N. Q., Hoff, H. A. and Wiedersich, H., to be published.Google Scholar
18. Harrison, D. E., Rad. Effects 70, 1 (1983).Google Scholar
19. Lam, N. Q., Leaf, G. K. and Wiedersich, H., J. Nucl. Mater. 88, 289 (1980).Google Scholar
20. Ho, P. S., Surface Sci. 72, 253 (1978).Google Scholar
21. Rehn, L. E., Lam, N. Q. and Wiedersich, H., this volume.Google Scholar
22. Maier, K., Bassani, C. and Schüle, W., Phys. Lett. 44A, 539 (1973).Google Scholar
23. Maier, K., Mehrer, H., Lessmann, E. and SchUle, W., Phys. Stat. Sol. (b) 78, 689 (1976).Google Scholar
24. Seran, J. L., Acta Met. 24, 627 (1976).Google Scholar
25. Helfmeier, H. U., Z. Metallkde. 65, 238 (1974).Google Scholar
26. Butrymowicz, D. B., Manning, J. R. and Read, M. E., in: Diffusion Rate Data and Mass Transport Phenomena for Copper Systems (National Bureau of Standards, Washington, D.C., 1977) pp. 196—199. Google Scholar