Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T13:55:11.205Z Has data issue: false hasContentIssue false

A Study of Epitaxial Films of Bcc Nickel on FE{001} with leed Intensity analysis and Total Energy Band Calculations

Published online by Cambridge University Press:  25 February 2011

P. M. Marcus
Affiliation:
IBM Research Center, P.O. Box 218, Yorktown Heights, New York 10598, U.S.A.
V. L. Moruzzi
Affiliation:
IBM Research Center, P.O. Box 218, Yorktown Heights, New York 10598, U.S.A.
Z. Q. Wang
Affiliation:
College of Engineering and Applied Science State University of New York, Stony Brook, New York 11794, U.S.A.
Y. S. Li
Affiliation:
College of Engineering and Applied Science State University of New York, Stony Brook, New York 11794, U.S.A.
F. Jona
Affiliation:
College of Engineering and Applied Science State University of New York, Stony Brook, New York 11794, U.S.A.
Get access

Abstract

Analysis of LEED intensities of thin films of Ni grown epitaxially on bcc Fe{001} establishes that the structure is bcc up to six layers, but with a contraction of 5% of the first layer spacing and expansion of 5% of the second layer spacing. At thicknesses above six layers there is a gradual change to a new surface and bulk structure with increasing disorder. Spin-polarized total-energy band calculations show that the bcc Ni film is stretched 1.4% from its equilibrium value and thereby changed from nonmagnetic to ferromagnetic. The calculated results on stable and metastable phases of Fe, Co, Ni and Cu show that the equilibrium lattice parameters and differences in binding energies favor mutual epitaxy for any bcc or fcc pair. There are six pairs in which a possible metastable phase is grown epitaxially on a stable substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shih, H. D., Jona, F., Jepsen, D. W., Marcus, P. M., Phys. Rev. B15, 5550 (1977), Phys. Rev. B15, 5561 (1977).CrossRefGoogle Scholar
2. Prinz, G. A., Phys. Rev. Lett. 54, 1051 (1985).CrossRefGoogle Scholar
3. Montano, P. A., Lee, Y. C., Marcano, J., Min, H., Mat. Res. Soc. Symp. Proc. Vol. 56, 183 (1986).CrossRefGoogle Scholar
4. Heinrich, B., Arrott, A. S., Cochran, J. F., Liu, C. and Myrtle, K., J. Vac. Sci. Technol. 4, 1376 (1986).CrossRefGoogle Scholar
5. Wang, Z. O., Li, Y. S., Jona, F., Jepsen, D. W., Marcus, P. M., Solid State Commun. (in press)Google Scholar
6. Legg, K. O., Jona, F., Jepsen, D. W., Marcus, P. M., J. Phys. C10, 937 (1977).Google Scholar
7. Marcus, P. M., Moruzzi, V. L., Solid State Commun. 55, 971 (1985).CrossRefGoogle Scholar
8. Prinz, G. A., Mat. Res. Symp. Proc. Vol. 56, 139 (1986).CrossRefGoogle Scholar
9. Moruzzi, V. L., Marcus, P. M., Schwarz, K., Mohn, P., Phys. Rev. B34, 1784 (1986).CrossRefGoogle Scholar
10. Wang, C. S., Klein, B. M.. Krakauer, H., Phys. Rev. Lett. 54, 1852 (1985).CrossRefGoogle Scholar
11. Taylor, A. and Kagle, Brenda J., Crystallographic Data on Metal and Alloy Structures, (Dover Publications, New York, 1963).Google Scholar
12. Marcus, P. M., Moruzzi, V. L., Schwarz, K., Mat. Res. Symp. Proc. Vol 63, 117 (1986).CrossRefGoogle Scholar