Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T23:47:57.632Z Has data issue: false hasContentIssue false

Structure-Transport Relationships in Fast Ion Conducting Alkali Borate Glasses

Published online by Cambridge University Press:  28 February 2011

F. A. Fusco
Affiliation:
Crystal Physics and Optical Electronics Laboratory, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
H. L. Tuller
Affiliation:
Crystal Physics and Optical Electronics Laboratory, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
D. R. Uhlmann
Affiliation:
Crystal Physics and Optical Electronics Laboratory, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

The effect of CaO substitutions (between 1 and 10% (CaO)2/Li2O) on the transport and physical properties of two fast ion conducting lithium borate glass systems (37.3 mol % Li20, 62.7 mol % Li2O3 and 50 mol % Li2O, 50 mol % Li2O, 50 mol % B2O3) are investigated. Measurements of electrical conductivity, density and glass transition temperature are reported. The influence of strain effects on carrier mobility is examined. Measurements of electrical conductivity and molar volume are extended to a K2O·2B2O3 glass and compared with existing data for corresponding lithium and sodium diborate glasses.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tuller, H. L., Button, D. P. and Uhlmann, D. R., J. Non-Cryst. Solids 40, 93 (1980).Google Scholar
2. Tuller, H. L. and Barsoum, M. W., J. Non-Cryst. Solids 73, 331 (1985).Google Scholar
3. Button, D. P., Moon, P. K., Tuller, H. L. and Uhlmann, D. R., Glastechn. Ber. 56K, 856 (1983).Google Scholar
4. Owen, A. E., Prog. Cer. Sci. 3, 77 (1963).Google Scholar
5. “Density of glass by buoyancy”: Annual Book of ASTM Standards, Vol. 17, Designation C693-74.Google Scholar
6. Button, D. P., Ph.D. thesis, M.I.T., 1983.Google Scholar
7. Shelby, J. E., J. Appl. Phys. 44, 3883 (1973).Google Scholar
8. Button, D. P., Tandon, R. P., Tuller, H. L. and Uhlmann, D. R., Solid State Ionics 5, 655 (1981).Google Scholar
9. Button, D. P., Tandon, R., King, C., Velez, M. H., Tuller, H. L. and Uhlmann, D. R., J. Non-Cryst. Solids 49, 129 (1982).Google Scholar
10. Konijnendijk, W. L., Phys. Chem. Glasses 17, 205 (1976).Google Scholar