Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T09:32:28.717Z Has data issue: false hasContentIssue false

Structures and Physical Properties of Ternary Antimonides RE3MSb5 (M = Zr, Hf), U3MSb5 (M = Zr, Hf, Nb), and YbCrSb3

Published online by Cambridge University Press:  01 February 2011

Andriy V. Tkachuk
Affiliation:
Department of Chemistry, University of Alberta, Edmonton, AB Canada T6G 2G2
Shane J. Crerar
Affiliation:
Department of Chemistry, University of Alberta, Edmonton, AB Canada T6G 2G2
Xing Wu
Affiliation:
Department of Chemistry, University of Alberta, Edmonton, AB Canada T6G 2G2
Craig P. T. Muirhead
Affiliation:
Department of Chemistry, University of Alberta, Edmonton, AB Canada T6G 2G2
Laura Deakin
Affiliation:
Department of Chemistry, University of Alberta, Edmonton, AB Canada T6G 2G2
Arthur Mar
Affiliation:
Department of Chemistry, University of Alberta, Edmonton, AB Canada T6G 2G2
Get access

Abstract

Ternary rare-earth transition-metal antimonides RExMySbz have provided fertile ground for discovering materials with varied electrical and magnetic properties such as superconductivity and ferromagnetism. The properties of two important classes of these compounds, RE3TiSb5 and RECrSb3, have been previously investigated. These studies have now been extended to RE3MSb5 (M = Zr, Hf), which show anomalies in their resistivity curves suggestive of electronic transitions, and YbCrSb3, which undergoes long-range magnetic ordering at 285 K, the highest Tc observed so far of all RECrSb3 members. Strong magnetic exchange interactions develop through coupling of f and d electrons in these compounds. The substitution of uranium for rare earth in RE3MSb5 results in the compounds U3MSb5 (M = Zr, Hf, Nb), which also display prominent transitions in their electrical resistivity and magnetic susceptibility curves.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mills, A. M., Lam, R., Ferguson, M. J., Deakin, L. and Mar, A., Coord Chem. Rev. 233–234, 207 (2002).Google Scholar
2. Deakin, L., Lam, R. and Mar, A., Inorg. Chem. 40, 960 (2001).Google Scholar
3. Deakin, L., Ferguson, M. J., Sprague, M. J., Mar, A., Sharma, R. D. and Jones, C. H. W., J. Solid State Chem. 164, 292 (2002).Google Scholar
4. Moore, S. H. D., Deakin, L., Ferguson, M. J. and Mar, A., Chem. Mater. 14, 4867 (2002).Google Scholar
5. Raju, N. P., Greedan, J. E., Ferguson, M. J. and Mar, A., Chem. Mater. 10, 3630 (1998).Google Scholar
6. Deakin, L., Ferguson, M. J., Mar, A., Greedan, J. E. and Wills, A. S., Chem. Mater. 13, 1407 (2001).Google Scholar
7. Deakin, L. and Mar, A., Chem. Mater. 15, 3343 (2003).Google Scholar
8. Bolloré, G., Ferguson, M. J., Hushagen, R. W. and Mar, A., Chem. Mater. 7, 2229 (1995).Google Scholar
9. Ferguson, M. J., Hushagen, R. W. and Mar, A., J. Alloys Compd. 249, 191 (1997).Google Scholar
10. Brylak, M. and Jeitschko, W., Z. Naturforsch. B: Chem. Sci. 50, 899 (1995).Google Scholar
11. Katoh, K. and Kasaya, M., Physica B (Amsterdam) 186–188, 428 (1993).Google Scholar
12. Brylak, M. and Jeitschko, W., Z. Naturforsch. B: Chem. Sci. 49, 747 (1994).Google Scholar
13. Boulet, P., Gross, G. M., André, G., Bourrée, F. and Noël, H., J. Solid State Chem. 144, 311 (1999).Google Scholar
14. Hartjes, K., Jeitschko, W. and Brylak, M., J. Magn. Magn. Mater. 173, 109 (1997).Google Scholar
15. Leonard, M., Saha, S. and Ali, N., J. Appl. Phys. 85, 4579 (1999).Google Scholar
16. Leonard, M. L., Dubenko, I. S. and Ali, N., J. Alloys Compd. 303–304, 265 (2000).Google Scholar
17. Jackson, D. D., Torelli, M. and Fisk, Z., Phys. Rev. B 65, 014421 (2002).Google Scholar
18. Granado, E., Martinho, H., Sercheli, M. S., Pagliuso, P. G., Jackson, D. D., Torelli, M., Lynn, J. W., Rettori, C., Fisk, Z. and Oseroff, S. B., Phys. Rev. Lett. 89, 107204 (2002).Google Scholar
19. Jackson, D. D. and Fisk, Z., J. Magn. Magn. Mater. 256, 106 (2003).Google Scholar
20. Jackson, D. D. and Fisk, Z., J. Alloys Compd. 377, 243 (2004).Google Scholar