Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T13:41:31.036Z Has data issue: false hasContentIssue false

The Structure of Porous Silicon Revealed by Electron Microscopy

Published online by Cambridge University Press:  15 February 2011

A. G. Cullis
Affiliation:
DRA Electronics Division, RSRE, St Andrews Road, Malvern, Worcs WR14 3PS, UK
L. T. Canham
Affiliation:
DRA Electronics Division, RSRE, St Andrews Road, Malvern, Worcs WR14 3PS, UK
O. D. Dosser
Affiliation:
DRA Electronics Division, RSRE, St Andrews Road, Malvern, Worcs WR14 3PS, UK
Get access

Abstract

This detailed electron microscope study of porous silicon compares the different structures of macro-, meso- and microporous material. Mesoporous silicon of high porosity (∼-80%) exhibits efficient red photoluminescence at room temperature. Transmission electron microscopy provides strong direct evidence that this visible luminescence arises from dramatic carrier confinement in quantum-size, crystalline silicon structures. Images of undulating, interconnected ‘quantum wires’ of widths <3nm are shown.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. IUPAC Manual of Symbols and Terminology, Appendix 2, Part 1. Pure and Appl. Chem. 31, 578 (1972).Google Scholar
2. Phillip, F., Urban, K. and Wilkens, M., Ultramicroscopy Q , 379 (1984).Google Scholar
3. Beale, M.I.J., Benjamin, J.D., Uren, M.J., Chew, N.G. and Cullis, A.G., J. Crystal Growth 73, 622 (1985).Google Scholar
4. Chuang, S.F., Collins, S.D. and Smith, R.L., Appl. Phys. Lett. 55, 675 (1989).Google Scholar
5. Sugayama, H. and Nittono, O., J. Crystal Growth 103, 156 (1990).Google Scholar
6. Kaushik, V.S., Datye, A.K., Tsao, S.S., Guilinger, T.R. and Kelly, M.J., Mater. Lett. 11, 109 (1991).Google Scholar
7. Gonchond, J.P., Halimaoui, A. and Ogura, K., in Microscopy of Semiconducting Materials 1991, edited by Cullis, A.G. and Long, N.J. (IOP Publishing, Bristol, 1991), p.235 Google Scholar
8. Haynes, J.R. and Westphal, W.C., Phys. Rev. 101, 1676 (1956).Google Scholar
9. Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
10. Canham, L.T., Marsh, K.J. and Brumhead, D., Electron. Times 590, 1 (1991).Google Scholar
11. Bomchil, G., Halimaoui, A. and Herino, R., Micro. Eng. 8, 293 (1988).Google Scholar
12. Turner, D.R., J. Electrochem. Soc. 105, 402 (1958).CrossRefGoogle Scholar
13. Arita, Y., J. Crystal Growth 45, 383 (1978).Google Scholar
14. Pickering, C., Beale, M.I.J., Robbins, D.J., Pearson, P.J. and Greef, R., J. Phys. C 17, 6535 (1984).Google Scholar
15. Goodes, S.R., Jenkins, T.E., Beale, M.I.J., Benjamin, J.D. and Pickering, C., Semicond. Sci. Technol. 3, 483 (1988).Google Scholar
16. Canham, L.T., Houlton, M.R., Leong, W.Y., Pickering, C. and Keen, J.M., J. Appl. Phys. 70, 422 (1991).Google Scholar
17. Cullis, A.G. and Canham, L.T., Nature 353, 335 (1991).CrossRefGoogle Scholar
18. Whittaker, D. and Canham, L.T., unpublished data.Google Scholar