Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T01:34:34.206Z Has data issue: false hasContentIssue false

Structure of Cleaved (001) USb2 Single Crystal Surface

Published online by Cambridge University Press:  31 January 2011

Shao-Ping Chen
Affiliation:
sc@lanl.gov, Los Alamos National Laboratory, Los Alamos, New Mexico, United States
Marilyn Hawley
Affiliation:
hawley@lanl.gov, United States
Phil B. Van Stockum
Affiliation:
pvans@stanford.edu, Stanford University, Department of Physics and Stanford Institute for Materials and Energy Sciences, Stanford, California, United States
Hari C. Manoharan
Affiliation:
manoharan@stanford.edu, Stanford University, Department of Physics and Stanford Institute for Materials and Energy Sciences, Stanford, California, United States
Eric Bauer
Affiliation:
edbauer@lanl.gov, Los Alamos National Laboratory, Los Alamos, New Mexico, United States
Get access

Abstract

We have achieved what we believe to be the first atomic resolution STM images for a uranium compound taken at room temperature. The a, b, and c lattice parameters in the images confirm that the USb2 crystals cleave on the (001) basal plane as expected. The a and b dimensions were equal, with the atoms arranged in a cubic pattern. Our calculations indicate a symmetric cut between Sb planes to be the most favorable cleavage plane and U atoms to be responsible for most of the DOS measured by STM. Some strange features observed in the STM will be discussed in conjunction with ab initio calculations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lebegue, S., Oppeneer, P.M., and Eriksson, O., Phys. Rev. B 73, (2006) p. 045119.Google Scholar
2. Castell, M.R., Muggelberg, C., and Briggs, G.A.D., J. Vac. Sci. Technol. B 14(2), (1995) p. 966.Google Scholar
3. Castell, M.R., Muggelberg, C., Dudarev, S.L., Sutton, A.P., Briggs, G.A.D., and Goddard, D.T., Appl. Phys. A 66, (1998) p. S963Google Scholar
4. Muggelberg, C., Castell, M.R., Briggs, G.A.D., and Goddard, D.T., Surf. Sci. 404, (1998) p. 673.Google Scholar
5. Norenberg, H. and Briggs, G. A. D., Surf. Sci. 433–435 (1999) p. 127; U. Berner and K. Schierbaum, Thin Solid Films, 400 (2001) p. 46.Google Scholar
6. Henkie, Z., Maslanka, R., Wisniewski, P., Fabrowski, R., Markowski, P.J., Franse, J.J.M., and Sprang, M. van, J. Alloys and Compounds 181, (1992) p. 276 Google Scholar
7. Henkie, Z., Wisniewski, P., Fabrowski, R., and Maslanka, R., Solid State Comm. 79(12), (1991) p. 1025 Google Scholar
8. Guziewicz, E., Durakiewicz, T., Olson, C.G., Joyce, J.J., Butterfield, M.T., Arko, A.J., Sarrao, J.L., and Wojakowski, A., Surf. Sci. 600, (2006) p. 1632 Google Scholar
9. Guziewicz, E., Durakiewicz, T., Butterfield, M.T., Olson, C.G., Joyce, J.J., Arko, A.J., Sarrao, J.L., Wojakowski, A., and Cichorek, T., Mat. Res. Soc. Symp. Proc. 802, (2004) p. 183 Google Scholar
10. Guziewicz, E., Durakiewicz, T., Butterfield, M.T., Olson, C.G., Joyce, J.J., Arko, A.J., Sarrao, J.L., Moore, D.P., and Morales, L., Phys. Rev. B 69, (2004) p. 045102Google Scholar
11. Aoki, D., Wisniewski, P., Miyake, K., Settai, R., Inada, Y., Sugiyama, K., Yamamoto, E., Haga, Y., and Onuki, Y., Physica B 281–282, (2000) p. 71.Google Scholar
12. Onuki, Y., Settai, R., Sugiyama, K., Inada, Y., Takeuchi, T., Haga, Y., Yamamoto, E., Harima, H., and Yamagami, H., J. Phys.: Condens. Matter 19, (2007) p. 125203 Google Scholar
13. Aoki, D., Wisniewski, P., Miyake, K., Watanabe, N., Inada, Y., Settai, R., Yamamoto, E., Haga, Y., and Onuki, Y., J. Phys. Soc. Japan 68(7), (1999) p. 2182.Google Scholar
14. Leciejewicz, J., Troc, R., Murasik, A., and Zygmunt, A., Phys. Stat. Sol. 22, (1967) p. 517 Google Scholar
15. Kato, H., Sakai, H., Ikushima, K., Kambe, S., Tokunaga, Y., Aoki, D., Haga, Y., Onuki, Y., Yasuoka, H., and Walstedt, R.E., Physica B 359–361, (2005) p. 1012 Google Scholar
16. Tsutsui, S., Nakada, M., Nasu, S., Haga, Y., Aoki, D., Wisniewski, P., and Onuki, Y., Phys. Rev. B 69, (2004) p. 054404 Google Scholar
17. Fisk, Z. and Remeika, J. P., “Growth of single crystals from molten metal fluxes” in Handbook on the Physics and Chemistry of Rare Earths, Vol. 12, edited by Gschneidner, K. A. Jr, and Eyring, L. ˜Elsevier, Amsterdam, (1989), p. 53; P. C. Canfield and Z. Fisk, Philos. Mag. B 65, (1992) p. 1117Google Scholar
18. Kresse, G. and Hafner, J., Phys. Rev. B 48, 13 (1993) p. 115; G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, (1996) p. 15.Google Scholar
19. Blöchl, P. E., Phys. Rev. B 50, (1994) p. 7593; G. Kresse and D. Joubert, Phys. Rev. B 59, (1999) p. 1758.Google Scholar
20. Niklasson, A. M. N. et al., Phys. Rev. B 67 (2003) p. 235105.Google Scholar
21. Chen, S. P., J. Mat. Res. 13, (1998) p. 1848.Google Scholar
22. Chen, S. P., Surface Science Lett. 264, (1992) p. L162.Google Scholar
23. Chen, S. P., Voter, A. F., and Srolovitz, D. J., Phys. Rev. Lett. 57, (1986) p. 1308.Google Scholar
24. Chen, S. P., Hawley, M., Stockum, P. B. Van, et al., Phil. Mag. In press (2009).Google Scholar