Published online by Cambridge University Press: 15 February 2011
A series of investigations have been conducted into the properties of N2O silicon oxynitride gate dielectrics, and the various methods of their growth. One of the principle advantages of these oxides is their resistance to interface state generation. This is linked to the presense of nitrogen near the substrate interface, where it is triply bonded to silicon. It is also demonstrated that during N2O-based furnace growth, the total concentration of NOx species varies strongly with the flow rate of N2O. This has been correlated to the temperature profile of the furnace, which can be affected by the exothermic decomposition of N2O. This property has been exploited to controllably adjust the rate of nitrogen incorporation by up to a factor of three. Although nitrogen incorporation during furnace processing is generally stable, it is shown that atomic oxygen is capable of removing previously incorporated nitrogen. Sources of atomic oxygen include the decomposition of N2O during RTP treatment, N2O processing in a high flow rate furnace, or from ozone annealing.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.