Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T15:34:18.224Z Has data issue: false hasContentIssue false

Structural Response of BaTiO3/CaTiO3 Superlattice to Applied Electric Fields

Published online by Cambridge University Press:  31 January 2011

Ji Young Jo
Affiliation:
cycho@wisc.edu, University of Wisconsin-Madison, Madison, Wisconsin, United States
Rebecca Sichel
Affiliation:
sichel@wisc.edu, University of Wisconsin-Madison, Madison, Wisconsin, United States
Ho Nyung Lee
Affiliation:
hnlee@ornl.gov, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
Eric Dufresne
Affiliation:
dufresne@aps.anl.gov, Argonne National Laboratory, Advanced Photon Source, Argonne, Illinois, United States
Paul Evans
Affiliation:
evans@engr.wisc.edu, University of Wisconsin-Madison, Madison, Wisconsin, United States
Get access

Abstract

The structural response of a ferroelectric BaTiO3/dielectric CaTiO3 superlattice to the bipolar applied electric field was studied using time-resolved x-ray microdiffraction. Structural results were compared to the polarization-electric field hysteresis curve obtained from electrical measurements. The superlattice x-ray reflections were found to have a broad distribution of intensity in reciprocal space under applied electric fields exceeding the nominal coercive electric field. The broad distribution of the lattice constant at high electric fields is compared with a model in which the constituent layers of the superlattice have different coercive fields for the polarization switching.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Neaton, J. B. and Rabe, K. M., Appl. Phys. Lett. 82, 1586 (2003).Google Scholar
2 Lee, H. N., Christen, H. M., Chrishlom, M. F., Rouleau, C. M. and Lowndes, D. H., Nature 433, 395 (2005).Google Scholar
3 Tian, W., Jiang, J. C., Pan, X. Q., Haeni, J. H., Li, Y. L., Chen, L. Q., Schlom, D. G., Neaton, J. B., Rabe, K. M. and Jia, Q. X., Appl. Phys. Lett. 89, 092905 (2006).Google Scholar
4 Stephanovich, V. A., Lukyanchuk, I. A. and Karkut, M. G., Phys. Rev. Lett. 94, 047601 (2005).Google Scholar
5 Lisenkov, S., Ponomareva, I. and Bellaiche, L., Phys. Rev. B 79, 024101 (2009).Google Scholar
6 Grigoriev, A., Sichel, R., Lee, H. N., Landahl, E. C., Adams, B., Dufresne, E. M. and Evans, P. G., Phys. Rev. Lett. 100, 027604 (2008).Google Scholar
7 Do, D. H., Grigoriev, A., Kim, D. M., Eom, C. B., Evans, P. G. and Dufresne, E. M., Integr. Ferroelectr. 101, 174 (2008).Google Scholar
8 Do, D. H., PhD thesis, University of Wisconsin-Madison, 2006.Google Scholar
9 Sepliarsky, M., Phillpot, S. R., Wolf, D., Stachiotti, M. G. and Migoni, R. L., J. Appl. Phys. 90, 4509 (2001).Google Scholar