Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T13:14:18.399Z Has data issue: false hasContentIssue false

Structural Requirements for Surface-Induced Aromatic Stabilization

Published online by Cambridge University Press:  28 March 2014

Takuya Hosokai
Affiliation:
Department of Materials Science and Technology, Iwate University, 4-3-5 Ueda, Morioka, 0208551 Iwate, JAPAN
Keiichirou Yonezawa
Affiliation:
Department of Nanomaterial Science, Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, 2638522 Chiba, JAPAN
Kengo Kato
Affiliation:
Department of Nanomaterial Science, Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, 2638522 Chiba, JAPAN
Rintaro Makino
Affiliation:
Department of Nanomaterial Science, Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, 2638522 Chiba, JAPAN
Jinpeng Yang
Affiliation:
Department of Nanomaterial Science, Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, 2638522 Chiba, JAPAN
Kaveenga Rasika Koswattage
Affiliation:
Department of Nanomaterial Science, Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, 2638522 Chiba, JAPAN
Alexander Gerlach
Affiliation:
Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen 72076, GERMANY
Frank Schreiber
Affiliation:
Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen 72076, GERMANY
Nobuo Ueno
Affiliation:
Department of Nanomaterial Science, Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, 2638522 Chiba, JAPAN
Satoshi Kera
Affiliation:
Department of Nanomaterial Science, Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, 2638522 Chiba, JAPAN
Get access

Abstract

Surface-induced aromatic stabilization (SIAS), a recently proposed mechanism leading to a formation of charge-transfer (CT) states at organic/metal (O/M) interfaces [G. Heimel, et al., Nat. Chem.5, 187 (2013)], was investigated for an aromatic hydrocarbon, diindenoperylene (DIP), by means of synchrotron radiation-based ultraviolet photoelectron spectroscopy (UPS). By employing DIP and noble metal substrates (Ag and Cu), we confirmed the formation of CT states, indicating that an inclusion of a specific functional group with a hetero-atom within adsorbate molecules as suggested before is not necessarily required for the formation of CT states mediated by the SIAS. With a comparison of the mother and analogue molecules, perylene and PTCDA, we discuss the structural requirement for the realization of the SIAS.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ishii, H., Sugiyama, K., Ito, E., Seki, K., Adv. Mater. 11, 605 (1999).10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO;2-Q3.0.CO;2-Q>CrossRef3.0.CO;2-Q>Google Scholar
Koch, N., Chem. Phys. Chem. 8, 1438 (2007).10.1002/cphc.200700177CrossRefGoogle Scholar
Braun, S., Salaneck, W. R., Fahlmann, M., Adv. Mater. 21, 1450 (2009).10.1002/adma.200802893CrossRefGoogle Scholar
Hwang, J., Wan, A., Kahn, A., Mater. Sci. Eng. Rep. 64, 1 (2009).10.1016/j.mser.2008.12.001CrossRefGoogle Scholar
Duhm, S., Glowatzki, H., Cimpeanu, V., Klankermayer, J., Rabe, J. P., Johnson, R. L., Koch, N., J. Phys. Chem. B 110, 21069 (2006).10.1021/jp0644715CrossRefGoogle Scholar
Duhm, S., Gerlach, A., Salzmann, I., Bröcker, B., Johnson, R. L., Schreiber, F., Koch, N., Org. Electronics 9, 111 (2008).10.1016/j.orgel.2007.10.004CrossRefGoogle Scholar
Ziroff, J., Forster, F., Schöll, A., Puschnig, P., Reinert, F., Phys. Rev. Lett. 104, 23304 (2010).10.1103/PhysRevLett.104.233004CrossRefGoogle Scholar
Wieβner, M., Kübert, J., Feyer, V., Puschnig, P., Schöll, A., Reinert, F., Phys. Rev. B 88, 075437 (2013).Google Scholar
Heimel, G., Duhm, S., Salzmann, I., Gerlach, A., Strozecka, A., Niederhausen, J., Bürker, C., Hosokai, T., Fernandez-Torrente, I., Schulze, G., Winkler, S., Wilke, A., Schlesinger, R., Frisch, J., Bröker, B., Vollmer, A., Detlefs, B., Pflaum, J., Kera, S., Franke, K. J., Ueno, N., Pascual, J. I., Schreiber, F., Koch, N., Nat. Chem. 5, 187 (2013).10.1038/nchem.1572CrossRefGoogle Scholar
Seki, K., Nakagawa, H., Fukui, K., Ishiguro, E., Kato, R., Mori, T., Sakai, K., Watanabe, M., Nucl. Instrum. Meth. A 246, 264 (1986).10.1016/0168-9002(86)90087-2CrossRefGoogle Scholar
Witte, G., Lukas, S., Bagus, P. S., Wöll, C., Appl. Phys. Lett. 87, 263502 (2005).10.1063/1.2151253CrossRefGoogle Scholar
Casu, M. B., Biswas, I., Schuster, B.-E., Nagel, M., Schuppler, S., Chassé, T., Appl. Phys. Lett. 93, 024103 (2008).10.1063/1.2957474CrossRefGoogle Scholar
Casu, M. B., Savu, S.-A., Schuster, B.-E., Biswas, I., Raisch, C., Marchetto, H., Schmidt, Th., Chassé, T., Chem. Comm. 48, 6957 (2012).10.1039/c2cc31339aCrossRefGoogle Scholar
Zhang, X.-N., de Oteyza, D. G., Wakayama, Y., Dosch, H., Surf. Sci. 603, 3179 (2009).10.1016/j.susc.2009.07.016CrossRefGoogle Scholar
de Oteyza, D. G., Barrena, E., Dosch, H., Wakayama, Y., Phys. Chem. Chem. Phys. 11, 8741 (2009).10.1039/b903116bCrossRefGoogle Scholar
Huang, H., Sun, J.-T., Feng, Y.P., Chen, W., Wee, A.T.S., Phys. Chem. Chem. Phys. 13, 20933 (2011).10.1039/c1cp22769fCrossRefGoogle Scholar
Yamane, H., Yabuuchi, Y., Fukagawa, H., Kera, S., Okudaira, K. K., Ueno, N., J. Appl. Phys. 99, 093705 (2006).10.1063/1.2192978CrossRefGoogle Scholar
Hosokai, T., Machida, H., Gerlach, A., Kera, S., Schreiber, F., Ueno, N., Phys. Rev. B 83, 195310 (2011).10.1103/PhysRevB.83.195310CrossRefGoogle Scholar
Dürr, A. C., Koch, N., Kelsch, M., Rühm, A., Ghijsen, J., Johnson, R. L., Pireaux, J.-J., Schwartz, J., Schreiber, F., Dosch, H., Kahn, A., Phys. Rev. B 68, 115428 (2003).10.1103/PhysRevB.68.115428CrossRefGoogle Scholar
Huang, Y. L., Chen, W., Huang, H., Qi, D. C., Chen, S., Gao, X. Y., Pflaum, J., Wee, A. T. S., J. Phys. Chem. C, 113, 9251 (2009).10.1021/jp810804tCrossRefGoogle Scholar
Bürker, C., Ferri, N., Tkatchenko, A., Gerlach, A., Niederhausen, J., Hosokai, T., Duhm, S., Zegenhagen, J., Koch, N., Schreiber, F., Phys. Rev. B 87, 165443 (2013).10.1103/PhysRevB.87.165443CrossRefGoogle Scholar
Kilian, L., Hauschild, A., Temirov, R., Soubatch, S., Schöll, A., Bendounan, A., Reinert, F., Lee, T.-L., Tautz, F. S., Sokolowski, M., Umbach, E., Phys. Rev. Lett. 100, 136103 (2008).10.1103/PhysRevLett.100.136103CrossRefGoogle Scholar
Manandhar, K. and Parkinson, B. A., J. Phys. Chem. C 114, 15394 (2010).10.1021/jp1008626CrossRefGoogle Scholar