Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T02:44:06.375Z Has data issue: false hasContentIssue false

Structural properties of amorphous aluminum and aluminum-nitrogen alloys. Computer simulations

Published online by Cambridge University Press:  01 February 2011

Ariel A. Valladares
Affiliation:
Instituto de Investigaciones en Materiales, UNAM, Apartado Postal 70–360, México, D. F., 04510, MEXICO
Alexander Valladares
Affiliation:
Departamento de Física, Facultad de Ciencias, UNAM, Apartado Postal 70–542, México, D. F., 04510, MEXICO
R. M. Valladares
Affiliation:
Departamento de Física, Facultad de Ciencias, UNAM, Apartado Postal 70–542, México, D. F., 04510, MEXICO
A. Calles
Affiliation:
Departamento de Física, Facultad de Ciencias, UNAM, Apartado Postal 70–542, México, D. F., 04510, MEXICO
Get access

Abstract

Liquid and amorphous metallic systems have proven difficult to model. Some efforts have relied on the use of parameterized classical potentials of the Lennard-Jones type or geometric hard sphere simulations, but first principles approaches have been rarely used. Clearly a knowledge of atomic structures is paramount for calculating physical properties. In this work we apply our recently developed ab initio DFT approach (A. A. Valladares et al., Eur. Phys. J. 22 (2001) 443) for the generation of amorphous semiconducting materials, to amorphize aluminum and an aluminum-nitrogen alloy. We report radial distribution functions (RDFs) and specific atomic structures of periodic amorphous/liquid cubic supercells of 108 atoms with a volume of (12.1485 Å)3, generated using the Harris functional.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Valladares, A. A., Alvarez, F., Liu, Z., Sticht, J. and Harris, J., Eur. Phys. J. 22 (2001) 443.Google Scholar
Alvarez, F. and Valladares, A. A., Appl. Phys Lett. 80 (2002) 58.Google Scholar
Alvarez, F., Díaz, C. C., Valladares, A. A. and Valladares, R. M., Phys. Rev. B 65 (2002) 113108–1.Google Scholar
Alvarez, F. and Valladares, A. A., Solid State Comm. 127 (2003) 483.Google Scholar
[2] Stepanyuk, V. S., Katsnelson, A. A., Szasz, A., Trushin, O. S., Müller, H., Watson, L. M. and Kirchmayr, H., J. Non-Cryst. Solids 151 (1992) 169.Google Scholar
[3] Finney, J. L., in Amorphous Solids and the Liquid State, ed. March, N. H., Street, R. A. and Tosi, M. (Plenum, New York, London, 1985) pp. 31.Google Scholar
[4] Miracle, D. B. and Senkov, O. N. J. Non-Cryst. Solids 319 (2003) 174.Google Scholar
[5] Fessler, R. R., Kaplow, R., and Averbach, B. L., Phys. Rev. 150 (1966) 34.Google Scholar
[6] Pant, M. M., Das, M. P. and Joshi, S. K., Phys. Rev. B 4 (1971) 4379.Google Scholar
[7] Alvarez, F. and Valladares, A. A., Phys. Rev. B 68 (2003) 205203–1.Google Scholar
[8] Valladares, A. A. and Alvarez, F., submitted for publication.Google Scholar
[9] Tanaka, M., in Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai, 1981, p. 197.Google Scholar
[10] Car, R. and Parrinello, M., Phys. Rev. Lett. 60 (1988) 204.Google Scholar
[11] Harris, J., Phys. Rev. B 31 (1985) 1770.Google Scholar
[12] FASTSTRUCTURE SIMANN, User Guide, Release 4.0.0 (San Diego, Molecular Simulations, Inc., September 1996).Google Scholar
[13] Li, Xiao-Ping, Andzelm, J., Harris, J. and Chaka, A. M., American Chemical Society, Anaheim Symposium [Ed. Ziegler, ], Chapter 26, (1996).Google Scholar
[14] Vosko, S. H., Wilk, L. and Nusair, M., Can. J. Phys. 58 (1980) 1200.Google Scholar
[15] Lin, Z. and Harris, J., J. Phys. Condens. Matter. 5 (1992) 1055.Google Scholar
[16] Valladares, Ariel A., presented at the LAM 12 Conference, Metz, France, 2004.Google Scholar