Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T23:43:39.807Z Has data issue: false hasContentIssue false

Structural Characterization and Schottky Barrier Height Measurements of Epitaxial NiSi2 on Si

Published online by Cambridge University Press:  26 February 2011

B. D. Hunt
Affiliation:
General Electric Corporate Research and Development, P.O. Box 8, Schenec-tady, NY 12301
L. J. Schowalter
Affiliation:
General Electric Corporate Research and Development, P.O. Box 8, Schenec-tady, NY 12301
N. Lewis
Affiliation:
General Electric Corporate Research and Development, P.O. Box 8, Schenec-tady, NY 12301
E. L. Hall
Affiliation:
General Electric Corporate Research and Development, P.O. Box 8, Schenec-tady, NY 12301
R. J. Hauenstein
Affiliation:
California Institute of Technology, Pasedena, CA 91125
T. E. Schlesrnger
Affiliation:
California Institute of Technology, Pasedena, CA 91125
T. C. McGill
Affiliation:
California Institute of Technology, Pasedena, CA 91125
Masako Okamoto
Affiliation:
Physics Dept., SUNY, Albany, NY 12222.
Shin Hashimoto
Affiliation:
Physics Dept., SUNY, Albany, NY 12222.
Get access

Abstract

Single crystal NiSi2 films of type A and type B orientations with thicknesses ranging from 70–600Å have been grown on (111), n-type Si substrates. TEM and channeling measurements indicate that these films are of excellent epitaxial quality with uniform orientations over the entire range of observation. HRTEM studies show regular and atomically abrupt interfaces for both NiSi2 orientations with occasional localized planar defects. I-V and photoresponse measurements of the Schottky barrier heights(SBH) of the type A films yield consistent values of 0.62±.01eV. However, for type B films I-V measurements give a SBH of 0.69±.01eV while the photoresponse results give 0.77±.05eV. This discrepancy can be explained quantitatively by a phenomenological model in which a small percentage of low barrier height regions is incorporated into the type B films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tung, R.T., Gibson, J.M., and Poate, J.M., Appl. Phys. Lett. 42, 888 (1983).Google Scholar
2. Tung, R.T., Phys. Rev. Lett. 52, 461 (1984).Google Scholar
3. Tung, R.T., J. Vac. Sci. Technol. B2, 465 (1984).Google Scholar
4. Geppert, D.V., Proc. IRE 50, 1527 (1962).Google Scholar
5. Liehr, M., Schmid, P.E., LeGoues, F.K., and Ho, P.S., Phys. Rev. Lett. 51, 2139 (1985).Google Scholar
6. Hauenstein, R.J., Schlesinger, T.E., McGill, T.C., Hunt, B.D., and Schowalter, L.J., Appl. Phys. Lett. 47, 853 (1985).Google Scholar
7. Bravman, J.C. and Sinclair, R., J. Electron Microscopy Techniques, 1, 53 (1984).Google Scholar
8. Gibson, J.M., Tung, R.T., Phillips, J.M., and Poate, J.M., Mat. Res. Soc. Sycep. Proc. 25, 405 (1984).Google Scholar
9. Okamato, Masako, Hashimoto, Shin, Gibson, W.M., Hunt, B.D., and Schowalter, L. J., to be published in Mat. Res. Soc. Symp. Proc. (Dec. 2–7, Boston, 1985).Google Scholar
10. Hauenstein, R.J., Schlesinger, T.E., McGill, T.C., Hunt, B.D., and Schowalter, L.J., to be published in the Proc. of the 32 Annual AVS Symposium (Nov. 19–22, Houston, 1985).Google Scholar
11. Norde, H., J. Appl. Phys. 50, 5052 (1979).Google Scholar
12. Sze, S.M., Physics of Semiconductor Devices (Wiley, NY, 1981), ch. 5.Google Scholar