Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T13:45:58.903Z Has data issue: false hasContentIssue false

Structural Change in Ferroelectric Phase Transition of Vinylidene Fluoride Copolymers as Studied by Waxs, Saxs, IR, Raman, and Computer Simulation Techniques

Published online by Cambridge University Press:  10 February 2011

K. Tashiro*
Affiliation:
Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560–0043, Japan, ktashiro@chem.sci.osaka-u.ac.jp
Get access

Abstract

Structure changes in the ferroelectric phase transitions of vinylidene fluoride-trifluoroethylene (VDF-TrFE) copolymers were investigated on the basis of a set of experimental data of WAXS, SAXS, IR and Raman measurements. An intimate relation has been clarified between the structural changes in the crystal lattice and the morphological changes. These structural changes were found to originate ultimately from the remarkable change in the molecular conformation between trans and gauche forms. In order to extract the essentially important factors governing this trans-gauche conformational change in the phase transition, the molecular dynamics calculation was carried out, giving relatively good reproduction of the observed structural changes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Furukawa, T., Date, M., Fukada, E., Tajitsu, Y., and Chiba, A., Jpn. J. Appl. Phys., 19, p. L109 (1980).Google Scholar
2. Fukada, E., Phase Transitions, 18, p. 135 (1989).Google Scholar
3. Furukawa, T., Phase Transitions, 18, p. 143 (1989).Google Scholar
4. Tashiro, K., Chapter 2, "Ferroelectric Polymers" ed. Nalwa, H. S., Marcel Dekker, New York, 1995.Google Scholar
5. Yamada, T., Ueda, T., and Kitayama, T., J. Appl. Phys., 52, p. 948 (1981).Google Scholar
6. Higashibata, Y., Sako, J., and Yagi, T., Ferroelectrics, 32, p. 85 (1981).Google Scholar
7. Tashiro, K., Takano, K., Kobayashi, M., Chatani, Y., and Tadokoro, H., Polymer Commun., 22, p. 1312 (1981).Google Scholar
8. Lovinger, A. J., Davis, G. T., Furukawa, T., and Broadhurst, M. G., Macromolecules, 15, p. 323 (1982).Google Scholar
9. Davis, G. T., Furukawa, T., Lovinger, A. J., and Broadhurst, M. G., Macromolecules, 15, p. 329 (1982).Google Scholar
10. Lovinger, A. J., Furukawa, T., T., Davis, G. T., and Broadhurst, M. G., Polymer, 24, p. 1225 (1983).Google Scholar
11. Lovinger, A. J., Furukawa, T., Davis, G. T., and Broadhurst, M. G., Polymer, 24, p. 1233 (1983).Google Scholar
12. Tashiro, K., Takano, K., Kobayashi, M., Chatani, Y., and Tadokoro, H., Polymer, 25, p. 195 (1984).Google Scholar
13. Tashiro, K., Takano, K., Kobayashi, M., Chatani, Y., and Tadokoro, H., Ferroelectrics, 57, p. 297 (1984).Google Scholar
14. Tashiro, K., and Kobayashi, M., Polymer, 29, p. 4429 (1988).Google Scholar
15. Tashiro, K., Tanaka, R., Ushitora, K., and Kobayashi, M., Ferroelectrics, 171, p. 145 (1995).Google Scholar
16. Tashiro, K., Tanaka, R., and Kobayashi, M., Polym. Prepr. Jpn., 45, p. 3119 (1996); 46, p. 3585 (1997).Google Scholar
17. Tanaka, R., Tashiro, K., and Kobayashi, M., Polymer, 40, p. 3855 (1999).Google Scholar
18. Abe, Y., Tashiro, K., and Kobayashi, M., Comp. Theor. Polym. Sci., in press.Google Scholar
19. Ishii, F., Odajima, A., and Ohigashi, H., Polym. J., 15, p. 875 (1983).Google Scholar
20. McBrierty, V. J., Douglass, D. C., and Furukawa, T., Macromolecules, 15, p. 1063 (1982).Google Scholar
21. McBrierty, V. J., Douglass, D. C., and Furukawa, T., acromolecules, 17, p. 1136 (1984).Google Scholar
22. Ishii, F., and Odajima, A., Polym. J., 18, p. 539 (1986).Google Scholar
23. Ishii, F., and Odajima, A., Polym. J., 18, p. 547 (1986).Google Scholar
24. Legrand, J. F., Ferroelectrics, 91, p. 303 (1989).Google Scholar
25. Legrand, J. F., Frick, B., Meurer, B., Schmidt, V. H., Bee, M., and Lajzerowicz, J., Ferroelectrics, 109, p. 321 (1990).Google Scholar
26. Tashiro, K., Tanaka, R., and Kobayashi, M., Macromolecules, 32, p. 514 (1999).Google Scholar
27. Li, G. R., Kagami, N., and Ohigashi, H., J. Appl. Phys., 72, p. 1056 (1992).Google Scholar
28. Stack, G. M., and Ting, R. Y., J. Polym. Sci.: Part B: Polym. Phys., 26, p. 55 (1988).Google Scholar
29. Kim, K. J., Kim, G. B., Vanlencia, C. L., and Rabolt, J. F., J. Polym. Sci.: Part B: Polym. Phys., 32, p. 2435 (1994).Google Scholar
30. Gregorio, R. Jr. and Botta, M., J. Polym. Sci: B, Polym. Phys. 36, p. 403 (1998).Google Scholar
31. Tashiro, K., Kobayashi, M., and Tadokoro, H., Macromolecules, 14, p. 1757 (1981).Google Scholar
32. Odajima, A., Ferroelectrics, 57, p. 159 (1984).Google Scholar
33. Banic, N. C., Boyle, F. P., Sluckin, T. J., Taylor, P. L., Tripathy, S. K., and Hopfinger, A. J., J. Chem. Phys., 72, p. 3191 (1980).Google Scholar
34. Zhang, R., and Taylor, P. L., J. Appl. Phys., 73, p. 1395 (1993).Google Scholar
35. Ikeda, S., and Suda, H., Phys. Rev. E, 56, p. 3231 (1997).Google Scholar
36. Karasawa, N., and Goddard, W. A. III, Macromolecules, 25, p. 7268 (1992).Google Scholar
37. Tashiro, K., Abe, Y., and Kobayashi, M., Ferroelectrics, 171, p. 281 (1995).Google Scholar
38. Kobayashi, M., Tashiro, K., Tadokoro, H., Macromolecules, 8, p. 158 (1975).Google Scholar