Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T04:09:32.905Z Has data issue: false hasContentIssue false

Structural and Optical Studies of Multi Shape ZnO Nanostructures Grown by Direct Vapor Phase Technique

Published online by Cambridge University Press:  01 February 2011

Shiva S Hullavarad
Affiliation:
fnssh1@uaf.edu, UNIVERSITY OF ALASKA FAIRBANKS, OFFICE OF ELECTRONIC MINIATURIZATION, 3330 INDUSTRIAL AVENUE, FAIRBANKS, AK, 99701, United States, 907-455-2017, 907-455-2019
P C Karulkar
Affiliation:
pramod.karulkar@uaf.edu, UNIVERSITY OF ALASKA FAIRBANKS, OFFICE OF ELECTRONIC MINIATURIZATION, 3330 INDUSTRIAL AVENUE, FAIRBANKS, AK, 99701, United States
R D Vispute
Affiliation:
VISPUTE@SQUID.UMD.EDU, UNIVERSITY OF MARYLAND, CENTER FOR SUPERCONDUCTIVITY RESEARCH, 082 REGENTS DRIVE, COLLEGE PARK, MD, 20742, United States
R Heng
Affiliation:
RATANAK@UMD.EDU, UNIVERSITY OF MARYLAND, CENTER FOR SUPERCONDUCTIVITY RESEARCH, 082 REGENTS DRIVE, COLLEGE PARK, MD, 20742, United States
T Venkatesan
Affiliation:
VENKY@SQUID.UMD.EDU, UNIVERSITY OF MARYLAND, CENTER FOR SUPERCONDUCTIVITY RESEARCH, 082 REGENTS DRIVE, COLLEGE PARK, MD, 20742, United States
Get access

Abstract

In this paper we report the growth of ZnO nanowires (12-60 nm) and nanorods (500 nm) by a method of Catalysis Free Direct Vapor Phase (DVP) technique. The nanowires were grown on c-Al2O3 and pulsed laser deposited ZnO nucleation layer on Al2O3 substrates at 800 °C without employing any metal catalysts that are conventionally used in MOCVD or Vapor-Liquid-Solid phase techniques. The ZnO nanowires are found to emit UV light at 386 nm with considerably lower green band emission.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Johnson, J., Choi, H.J., Knutsen, K. P., Schaller, R.D., Yang, P., Saykally, R.J., Nature Materials 1, 106 (2002)Google Scholar
2 Huang, M. H., et al., Science, 292, 1897 (2001).Google Scholar
3 Duan, X., Huang, Y., Agarwal, R., Lieber, C.M., Nature, 421, 241 (2003)Google Scholar
4 Zhang, Y., Russo, R.E., Mao, S.S., Appl. Phys. Lett., 87, 043106 (2005)Google Scholar
5 Johnson, J. C., et al., Nano Lett., 2, 279 (2002).Google Scholar
6 Xia, Y.N., Yang, P.D., Sun, Y.G., Wu, Y.Y., Mayers, B., Gates, B., Yin, Y.D., Kim, F., Yan, H.Q., Adv. Mater. 15, 353 (2003)Google Scholar
7 Fan, Z. and Lu, J.G., Appl. Phys. Lett., 86, 032111 (2005)Google Scholar
8 Park, Y. S., Litton, C. W., Collins, T. C., Reynolds, D. C., Phys. Rev., 143, 512 (1966)Google Scholar
9 Ravinder, D. and Sharma, J. K., J. Appl. Phys., 58, 838 (1985)Google Scholar
10 Wang, J. S. and Lakin, K. M., Appl. Phys. Lett., 42, 352 (1983)Google Scholar
11 Service, R. F., Science 276, 895 (1997)Google Scholar
12 Choopun, S., Vispute, R. D., Noch, W., Balsamo, A., Sharma, R. P., Venkatesan, T., Iliadis, A., Look, D. C., Appl. Phys. Lett. 75, 3947 (1999)Google Scholar
13 Gao, P.X., Lao, C.S., Hughes, W.L., Wang, Z.L., Chem. Phys. Lett., 408,174 (2005)Google Scholar
14 Ozgur, U., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Do, S., Doan, S., Avrutin, V., Cho, S.-J., Morkoc, H., J. Appl. Phys., 98, 041301 (2005)Google Scholar
15 Zou, B.S., Liu, R.B., Wang, F.F., Pan, A.L., Cao, L. and Wang, Z.L., J. Phys. Chem., B 110, 12865 (2006)Google Scholar
16 Banerjee, D., Lao, J. Y., Wang, D. Z., Huang, J. Y., Ren, Z. F., Steeves, D., Kimball, B., Sennett, M., Appl. Phys. Lett., 83, 2061 (2003)Google Scholar
17 Wang, X., Li, Q., Liu, Z., Zhang, J., Liu, Z., Wang, R., Appl. Phys. Lett., 84, 4941 (2004)Google Scholar