Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T11:45:35.276Z Has data issue: false hasContentIssue false

Structural and Ferromagnetic Properties of Fe3Si Thin Films Sputter-Deposited on Si(001)

Published online by Cambridge University Press:  31 January 2011

Siao Li LIEW
Affiliation:
sl-liew@imre.a-star.edu.sg, IMRE, Singapore, Singapore
Debbie Hwee Leng SENG
Affiliation:
debbie-seng@imre.a-star.edu.sg, IMRE, Singapore, Singapore
Hui Ru TAN
Affiliation:
dz-chi@imre.a-star.edu.sg, IMRE, Singapore, Singapore
Dongzhi CHI
Affiliation:
dz-chi@imre.a-star.edu.sg, IMRE, Singapore, Singapore
Get access

Abstract

Fe3Si thin films were deposited on Si(001) from magnetron sputtering with varying deposition rates and subjected to post-deposition anneal (PDA). Structural investigations via XRD, SIMS and cross-sectional TEM reveal that high rate-deposited Fe3Si is amorphous while low rate-deposited Fe3Si is poly-crystalline with significant differences observed at the Fe3Si/Si interfaces. The structural differences were attributed to the influence of deposition rate on the grain nucleation and microstructural morphology in the as-deposited Fe3Si and the subsequent annealed films which in turn determine the ferromagnetic properties. Magnetic properties of Fe3Si deposited at high rate degrade with PDA - coercive field Hc increases from 1 to 14 Oe while saturation magnetization Ms decreases from ˜940 to 590 emu/cm3. In contrast, Fe3Si film sputter-deposited at low rate has a Hc of 5 Oe, Ms of ˜920 emu/cm3 and remnant magnetization Mr ˜0.9Ms that are maintained even upon PDA at 350 oC.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Walιszewskι, J., Dobrzyński, L., Malιnowskι, A., Satula, D., Szymański, K., Prandl, W., Bruckel, Th., Scharpf, O., J. Magn. Magn. Mater. 132 349 (1994).Google Scholar
2 Kudrnovský, J., Christensen, N. E., Andersen, O. K., Phys. Rev. B43 5924 (1991).Google Scholar
3 Kalita, M. P. C., Perumal, A., Srinivasan, A., J. Magnetism and Magnetic Materials 320 2780 (2008).Google Scholar
4 Beaujoura, J. -M. L., Kent, A. D., Abraham, D. W., Sun, J. Z., J. Appl. Phys. 103 07B519 (2008).Google Scholar
5 Hernández, E. P., Rezende, S. M., Azevedo, A., J. Appl. Phys. 103 07D506 (2008).Google Scholar
6Joint Committee on Powder Diffraction Standards (JCPDS): Fe3Si (45-1207), Fe2Si (26-1141).Google Scholar
7 Ohring, M., Materials Science of Thin Films: Deposition and Structure, 2nd ed., Academic Press, San Diego, Calif., 2002.Google Scholar
8 Tomou, A., Gournis, D., Panagiotopoulos, I., Huang, Y., Hadjipanayis, G. C., and Kooi, B. J., J. Appl. Phys. 99 123915 (2006).Google Scholar
9 Herzer, G., IEEE Trans. Magn. 26 1397 (1990).Google Scholar
10 Hashimoto, A., Matsuu, T., Tada, M., Nakagawa, S., J. Appl. Phys. 103 07E734 (2008).Google Scholar
11 Hines, W. A., Menotti, A. H., Budnick, J. I., Burch, T. J., Litrenta, T., Niculescu, V., Raj, K., Phys. Rev. B13 4060 (1976).Google Scholar
12 Hattori, A. N., Hattori, K., Kodama, K., Hosoito, N., and Daimon, H., Appl. Phy. Lett. 91 201916 (2007).Google Scholar
13 Sadoh, T., Kumano, M., Kizuka, R., Ueda, K., Kenjo, A., Miyao, M., Appl. Phys. Lett. 89 182511 (2006).Google Scholar
14 Herfort, J., Schönherr, H.-P., Ploog, K. H., Appl. Phys. Lett. 83 3912 (2003).Google Scholar
15 Yoshitake, T., Nakagauchi, D., Ogawa, T., Itakura, M., Kuwano, N., Tomokiyo, Y., Kajiwara, T., and Nagayama, K., Appl. Phy. Lett. 86 262505 (2005).Google Scholar