Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T13:18:47.709Z Has data issue: false hasContentIssue false

Strong and Fragile Behavior in Liquid Polymers

Published online by Cambridge University Press:  16 February 2011

C. A. Angell
Affiliation:
Arizona State University, Dept. of Chemistry, Tempe, AZ 85287-1604
L. Monnerie
Affiliation:
Laboratoire de physico-chimie, Structurale et Macromoleculaire, E.S.P.C.I., 10 Rue Vauquelin, 75005 Paris, France
L. M. Torell
Affiliation:
Department of Physics, Chalmers University of Technology, Goteborg, S-41296, Sweden
Get access

Abstract

In the light of the strong and fragile classification of simple liquids we review some of the relaxation data for some well-known polymers to see the extent to which a similar pattern may be manifested. Relaxation time data rather than viscosity data are used in the polymer case to avoid complications from long chain effects on the Vogel-Fulcher equation pre exponent. A combination of light scattering and 13C NMR data seem to provide the most reliable guide to the microviscosity of interest to the classification. A pattern similar to that for viscous liquids is recovered with polyisobutylene, the “strongest” chain polymer and bisphenol polycarbonate, the most fragile. The extent to which correlations of other properties with fragility, found in the non-polymeric liquids cases, will carry over to the polymer case is still being evaluated, though the work of Hodge on the analysis of the more complicated problem of non-linear thermal relaxation, suggests the carry over may be extensive.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. (a) Angell, C.A., “Relaxations in Complex Systems”, Ed. Ngai, K. and Wright, G.B., National Technical information Service, U.S. Department of Commerce, Springfield, VA 22161 (1985), pg.253.Google Scholar
(b) Angell, C.A., J. Phys. Chem. Sol., 49 (8), 863 (1988).CrossRefGoogle Scholar
(c) Angell, C.A., “Relaxation in Liquid, Polymers and Plastic Crystals - Patterns and Problems”, J. Non-Cryst. Sol. (in press) Proc. of First Intern. Conf. on Relaxation in Complex Systems.Google Scholar
2. Murthy, S.S.N., J. Phys. Chem. 93, 3347 (1989).CrossRefGoogle Scholar
3. Roessler, E., Ber. Bunsen Gesell. Phys. Chem. 94, 392 (1990).CrossRefGoogle Scholar
4. Ngai, K.L., J. Non-Cryst. Sol. 95 & 96, 969 (1987).CrossRefGoogle Scholar
5. Laughlin, W.T. and Uhlmann, D.R., J. Phys. Chem. 76, 2317 (1972).CrossRefGoogle Scholar
6. Moynihan, C.T. et al. , Ann. M.Y. Acad. Sci., 279, 15 (1976).CrossRefGoogle Scholar
7. Kauzmann, A.W., Chem. Rev. 43, 219 (1948).CrossRefGoogle Scholar
8. Gibbs, J.H., in Modern Aspects of the Vitreous State, ed. McKenzie, J.D., Buttterwirth page 19.Google Scholar
9. Moynihan, C.T., Balitatcac, N., Boone, N. and Litovitz, T.A., J. Chem. Phys. 55, 3013 (1971).CrossRefGoogle Scholar
10. (a) Tauke, J., Litovitz, T.A. and Macedo, P.B., J. Am. Ceram. Soc. 51, 158 (1968).CrossRefGoogle Scholar
(b) Grimsditch, M., Bhadra, R. and Torell, L.M., Phys. Rev. Lett. 62, 2616 (1989); Prog. in Phys. 37, 196 (1989).CrossRefGoogle Scholar
11. GlycerolGoogle Scholar
(a) Pinnow, D.A., Candau, S.J., LaMacchia, J.T. and Litovitz, T.A., J. Accoust. Soc. Am. 43, 131 (1968)CrossRefGoogle Scholar
(b) Demoulin, C., Montrose, C.J. and Ostrowsky, N., Phys. Rev. A 9, 1740 (1974).CrossRefGoogle Scholar
12. Drake, p.W., Dill, J.F., Montrose, C.J. and Meister, R., J. Chem. Phys. 67, 1969 (1977).CrossRefGoogle Scholar
13. Fytas, G., Wang, C.H., Lilge, D. and Dorfmuller, Th., J. Chem. Phys. 75, 4247 (1981).CrossRefGoogle Scholar
14. Sidebottom, D.L. and Sorensen, C.M., Phys. Rev. B. 40, 461 (1989).CrossRefGoogle Scholar
15. Ca(NO3)2-KNO3 Google Scholar
(a) Torell, L.M., J. Chem. Phys. 76, 3467 (1982).CrossRefGoogle Scholar
(b) Sidebottom, D.L. and Sorensen, C.M., J. Chem. Phys. 91, 7153 (1989).CrossRefGoogle Scholar
(c) Cheng, L-T., Yan, X-X. and Nelson, K.A., J. Chem. Phys. 91, 6052 (1989).CrossRefGoogle Scholar
16. (a) Patterson, G.D., Douglass, D.C. and Latham, J.P., Macromolecules II, 263 (1978).Google Scholar
(b) Torell, L.M., Stevens, J.M. and Borjesson, L, Polymer 28, 1803 (1987).Google Scholar
(c) Torell, L.M., Stevens, J.M. and Borjesson, L., Physica Scripta. 35, 692 (1987).Google Scholar
17. Duggal, A.R. and Nelson, K.A. (preprint).Google Scholar
18. Wang, C.H., Fytas, G., Lilge, D. and Dorfmuller, Th., Macromolecules 14, 1363 (1981).CrossRefGoogle Scholar
19. Dejean de la Batie, R., Laupretre, F., and Monnerie, L., (a) Macromol. 21, 2045,2052, (1988), (b) Macromol., 22, 122, 2617, (1989).CrossRefGoogle Scholar
20. Birge, N.O., Phys. Rev. B 34, 1641 (1986).CrossRefGoogle Scholar
21. Birge, N.O. and Nagel, S. Phys. Rev. Lett. 54, 2674 (1985).CrossRefGoogle Scholar
22. Polyisobutylene:Google Scholar
(a) Patterson, G.D., J. Polym. Sci. Polym. Phys. Ed. 15, 455 (1977).CrossRefGoogle Scholar
(b) Lindsay, S.M. and Shepherd, I.W., Adv. Chem. 174, 207 (1979).CrossRefGoogle Scholar
(c) see ref. 19Google Scholar
23. Polypropylene oxide:Google Scholar
(a) Huang, Y.Y. and Wang, C.H., J. Chem. Phys. 62, 120 (1975).CrossRefGoogle Scholar
(b) Lindsay, S.M., Hartley, A.J., and Shepherd, I.W., Polymer 17, 501 (1976).CrossRefGoogle Scholar
(c) Patterson, G.D., Douglass, D.C. and Latham, P.P., Macromolecules 11, 263 (1978).CrossRefGoogle Scholar
24. Polydimethyl siloxane:Google Scholar
(a) Patterson, G.D., J. Polym. Sci. Polym. Phys. Ed. 15, 455 (1977).CrossRefGoogle Scholar
(b) Lindsay, S.M., Adshead, A., and shepherd, I.W., Polymer 18, 862 (1977).CrossRefGoogle Scholar
(c) Wang, C.H. Google Scholar
25. Polystyrene: Patterson, G.D., J. Polym. Sci. Polym. Phys. Ed. 15, 579 (1977).CrossRefGoogle Scholar
26. Polycarbonate: Patterson, G.D., J. Macromol. Sci. Phys. B13, 647 (1977).CrossRefGoogle Scholar
27. Patterson, G.D., CRC Crit. Revs. 374 (1988).Google Scholar
28. Williams, M. L., Landel, R.F., and Ferry, J.D. Jam. Chem. Soc., 77, 3701, (1955)CrossRefGoogle Scholar
29. Monnerie, L., (lecture notes, unpublished)Google Scholar
30. Weissman, M. (preprint).Google Scholar
31. (a) Hodge, I.M., Macromolecules 19, 936 (1986).CrossRefGoogle Scholar
(b) Hodge, I.M., These proceedingsGoogle Scholar
32. Sandahl, J., Schantz, S., Borjesson, L., Stevens, J.R., and Torell, L.M., J. Chem. Phys. 91, 655 (1989).CrossRefGoogle Scholar
33. Adam, G. and Gibbs, J.H., J. Chem. Phys. 43, 139 (1965).CrossRefGoogle Scholar
34. Angell, C.A., Monnerie, L. and Torell, L.M. (to be published).Google Scholar
35. Jones, A.A., Lubianez, R.P., Hanson, M.A. and Shostak, J., Polym. Sci., Polym. Ph. 16, 1685 (1978).CrossRefGoogle Scholar
36. Lin, Y.H. and Wang, C.H., J. Chem. Phys. 69, 1546 (1978).CrossRefGoogle Scholar
37. Cheng, L.-T., Yan, Y.-X., and Nedlson, K.A., J. Chem. Phys., 91, 6052, (1989).CrossRefGoogle Scholar
38. O'Reilly, J.M. (private communication).Google Scholar