Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T13:19:30.887Z Has data issue: false hasContentIssue false

Stress-controlled phonon-impurity resonances in terahertz silicon lasers

Published online by Cambridge University Press:  31 January 2011

Sergey G. Pavlov*
Affiliation:
sergeij.pavlov@dlr.de
Get access

Abstract

Optically pumped terahertz silicon lasers utilize transitions between shallow donor states at low lattice temperatures. Population inversion in these lasers is built-up due to selective relaxation routes of optically excited electrons into impurity ground state. Each relaxation step of the electron occurs under assistance of intervalley and intravalley phonons with energies approaching the particular energy gaps between interacting excited donor states. These impurity phonon interactions determine, at the end, the lifetimes of the laser levels, and, therefore, efficiency of intracenter silicon lasers. Deformation of silicon crystal is a classical example of controllable influence on energy spectrum of shallow donor levels due to specific splitting and shifts of conduction band valleys. Using moderate (up to 400 MPa) external uniaxial deformation of a crystal, one can radically modify the impurity spectra while the phononic spectra remain almost unchanged. We have demonstrated significant improvement of efficiency for intracenter silicon lasers followed by changes of lifetime for the upper and the lower laser levels due to moving the impurity levels either into or out of resonance with corresponding intervalley phonon frequencies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hübers, H.-W., Pavlov, S. G. and Shastin, V. N. Semicond. Sci. Technol., 20, S211–S221(2005).Google Scholar
2 Rong, H. Liu, A. Jones, R. Cohen, O. Hak, D. Nicolaescu, R. Fang, A. and Paniccia, M. Nature 433, 292294(2005).Google Scholar
3 Rong, H. Jones, R. Liu, A. Cohen, O. Hak, D. Fang, A. and Paniccia, M. Nature 433, 725728(2005).Google Scholar
4 Pavlov, S. G. Hübers, H.-W., Hovenier, J. N. Klaassen, T. O. Carder, D. A. Phillips, P. J. Redlich, B. Riemann, H. Zhukavin, R. Kh., and Shastin, V. N. Phys. Rev. Lett. 96, 037404(2006).Google Scholar
5 Pavlov, S. G. Böttger, U., Abrosimov, N. V. Riemann, H. Shastin, V. N. Redlich, B. Meer, A. F. G. van der and Hübers, H.-W., Physica B 404, 46614663(2009).Google Scholar
6 Lv, P.-C. Troeger, R. T. Adam, T. N. Kim, S. Kolodzey, J. Yassievich, I. N. Odnoblyudov, M. A. and Kagan, M. S. Appl. Phys. Lett. 85, 2224(2004).Google Scholar
7 Lynch, S. A. Townsend, P. Matmon, G. Paul, D. J. Bain, M. Gamble, H. S. Zhang, J. Ikonic, Z. Kelsall, R. W. and Harrison, P. Appl. Phys. Lett. 87, 101114(2005).Google Scholar
8 Pavesi, L. Gaburro, Z. Negro, L. Dal, Bettotti, P.G. Vijaya Prakash, Cazzanelli, M. Oton, C. J. Optics and Lasers in Engineering 39, 345368(2003)Google Scholar
9 Altukhov, I. V. Chirkova, E. G. Sinis, V. P. Kagan, M. S. Gousev, Yu. P. Thomas, S. G. Wang, K. L. Odnoblyudov, M. A. and Yassievich, I. N. Appl. Phys. Lett. 79, 39093911(2001).Google Scholar
10 Polman, A. Min, B. Kalkman, J. Kippenberg, T. J. and Vahala, K. J. Appl. Phys. Lett. 84, 10371039(2004).Google Scholar
11 Kudryavtsev, K. E. Shmagin, V. B. Shengurov, D. V. and Krasilnik, Z. F. Semicond. Sci. Technol. 24, 065009(2009).Google Scholar
12 Vinh, N. Q. Greenland, P. T. Litvinenko, K. Redlich, B. Meer, A. F. G. van der, Lynch, S. A. Warner, M. Stoneham, A. M. Aeppli, G. Paul, D. J. Pidgeon, C. R. and Murdin, B. N. PNAS 105, 1064910653(2008).Google Scholar
13 Tsyplenkov, V. V. Demidov, E. V. Kovalevsky, K. A. and Shastin, V. N. Semiconductors 42, 10161022(2008).Google Scholar
14 Hübers, H.-W., Pavlov, S. G. Rümmeli, M. H., Zhukavin, R. Kh. Orlova, E E. Riemann, H. and Shastin, V. N. Physica B 308-310, 232235(2001).Google Scholar
15 Pavlov, S. G. Hübers, H.-W., Riemann, H. Zhukavin, R. Kh. Orlova, E. E. and Shastin, V. N. J. Appl. Phys. 92, 56325634(2002).Google Scholar
16 Pavlov, S. G. Hübers, H.-W., Rümmeli, M. H., Zhukavin, R. Kh. Orlova, E. E. Shastin, V. N. and Riemann, H. Appl. Phys. Lett. 80, 47174719(2002).Google Scholar
17 Hübers, H.-W., Pavlov, S. G. Riemann, H. Abrosimov, N. V. R. KZhukavin, h. and Shastin, V. N. Appl. Phys. Lett. 84, 36003602(2004).Google Scholar
18 Ramdas, A. K. and Rodriguez, S. Rep. Prog. Phys. 44, 12971387(1981).Google Scholar
19 Chang, Y.-C. McGill, T. C. and Smith, D. L. Phys. Rev. B 23, 41694182(1981).Google Scholar
20 Asche, M. and Sarbei, O. G. phys. stat. sol. (b) 103, 1150(1981).Google Scholar
21 Zhukavin, R. Kh. Tsyplenkov, V. V. Kovalevsky, K. A. Shastin, V. N. Pavlov, S. G. Böttger, U., Hübers, H.-W., Riemann, H. Abrosimov, N. V. and Nötzel, N., Appl. Phys. Lett. 90, 051101(2007).Google Scholar
22 Pavlov, S. G. Böttger, U., Hübers, H.-W., Zhukavin, R. Kh. Kovalevsky, K. A. Tsyplenkov, V. V. Shastin, V. N. Abrosimov, N. V. and Riemann, H. Appl. Phys. Lett. 90, 141109(2007).Google Scholar
23 McSkimin, H. J. J. Appl. Phys. 24, 988997(1953).Google Scholar
24 Wilson, D. K. and Feher, G. Phys. Rev. 124, 10681083(1961).Google Scholar