Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T01:42:45.287Z Has data issue: false hasContentIssue false

Stress and Deformation of Pzt Thin Film on Silicon Wafer Due to Thermal Expansion

Published online by Cambridge University Press:  10 February 2011

Ming Zang
Affiliation:
Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455
Dennis L. Polla
Affiliation:
Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455
Shayne M. Zurn
Affiliation:
Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455
Tianhong Cui
Affiliation:
Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455
Get access

Abstract

Stress and deformation of PZT thin films deposited on silicon wafers due to thermal expansion during the annealing process are modeled using a 3-D shell element of ANSYS. Two different designs of PZT thin films on the wafer are modeled. The first design is a PZT/Pt/Ti/silicon dioxide/silicon wafer, which is used for making acoustic emission sensors. The second design is a PZT/Pt/Ti/silicon dioxide/silicon nitride/silicon dioxide/silicon wafer, commonly used in fabrication of cantilever beams. For the design without the silicon nitride layer, the thermal stress of the PZT film is 298MPa, Pt 1280MPa, Ti 647MPa, the silicon dioxide layer is 228MPa, and the silicon wafer is 0.41–1.67MPa. For the design with silicon nitride, the thermal stresses are: PZT 301MPa, Pt 1280MPa, Ti 651MPa, silicon dioxide 226MPa, silicon nitride 416MPa, silicon dioxide 226MPa, and silicon wafer 1.05–4.23MPa. The residual stress of the PZT film is measured at 200–25OMPa for the design without silicon nitride, and 336MPa for the design with silicon nitride. Comparisons of the thermal stress with the tensile or proof stress of material for each layer indicate that thermal stress of the PZT film is slightly greater than its bulk tensile stress, that of Pt film is five times greater than its bulk tensile stress, and that of Ti film is approximately equal to its bulk tensile stress. The thermal stresses of silicon dioxide, silicon nitride, and silicon wafer layers are far smaller than their proof stresses.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Fukushima, J., Kodaira, K., and Matsushita, T., J. Mater. Sci. 19, pp. 595–8 (1984).10.1007/BF02403247Google Scholar
[2] Klee, M., Eusemann, R., Waser, R., Brand, W., and Hal, H. van, J. Appl. Phys. 72, pp. 1566–76 (1992).10.1063/1.351726Google Scholar
[3] Nguyen, C. T.-C., Katehi, L.P.B., and Rebeiz, G.M., Proc. IEEE, 86, pp. 1756–68 (1998).10.1109/5.704281Google Scholar
[4] Dubois, M. Alexandre and Muralt, P., IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 42, pp. 1169–77 (1998).10.1109/58.726440Google Scholar
[5] Lee, C., Itoh, T., and Suga, T., IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 43, pp. 553–9 (1996).Google Scholar
[6] Yoon, Y.S., Kim, J.H., Bonne, U.A., Schmidt, A.M., and Polla, D.L., Mater. Res. Soc. Proc. 444, pp. 143–8 (1997).10.1557/PROC-444-143Google Scholar
[7] Polla, D.L., SPIE, Int. Soc. Opt. Eng., 3046, pp. 24–7 (1997).Google Scholar
[8] Kushida, K., Appl. Phys. Lett., 72, pp. 608–10 (1998).Google Scholar
[9] Tuttle, B.A., Voigt, J.A., Garino, T.J., Goodnow, D.C., Schwartz, R.W., Lamppa, D.L., Headley, T.J., and Eatough, M.O., Proc. IEEE Internal. Sym. Appl. Ferroelect., pp. 344–8 (1992).Google Scholar
[10] Ma, P., Properties of Silicon, EMIS Datareviews Series No. 4, New York: INSPEC, 1988, pp. 650–.Google Scholar
[11] Vlassak, J. J. and Nix, W. D., J. Mater. Res., 7, pp. 3242–9 (1992).10.1557/JMR.1992.3242Google Scholar
[12] Cottrell, A. H., The Mechanical Properties of Matter, New York: John Wiley & Sons, Inc., 1964, p. 6.Google Scholar
[13] Fisher, E. S. and Renken, C. J., Phys. Rev., 135, no. 2A, pp. A482– (1964).10.1103/PhysRev.135.A482Google Scholar
[14] Smithells, C. J., ”Metals Reference Book”, New York: Interscience Publishers, Inc., 1955.Google Scholar
[15] Collard, S. M. and McLellan, R. B., Acta Metall. Mater., 40, pp. 699– (1992).10.1016/0956-7151(92)90011-3Google Scholar
[16] Leibbrandt, G. W. R., Wijk, R. van, and Habraken, F. H. P. M., Phys. Rev. B, 47, pp. 6630–43, (1993).10.1103/PhysRevB.47.6630Google Scholar
[17] Sakata, M., Wakabayashi, S., Goto, H., Totani, H., Takeuchi, M., and Yada, T., Proc. IEEE, Micro Electro Mech. Sys., pp. 263–6 (1996).Google Scholar
[18] ”Piezoelectic Ceramics,” Institute of Acoustics Academia Sinica, China.Google Scholar
[19] Tables of Material Properties, Aura Ceramics, Inc., 1996.Google Scholar
[20] Okada, Y. and Tokumaru, Y., J. Appl. Phys., 56, pp. 314–20 (1984).10.1063/1.333965Google Scholar
[21] White, G. K., J. Phys. D: Appl. Phys., 6, pp. 2070–8 (1973).10.1088/0022-3727/6/17/313Google Scholar
[22] Rashidian, B. and Allen, M.G., Proc. IEEE Micro Electro Mech. Sys., pp. 24–9 (1993).Google Scholar
[23] Wang, M., Thermal Expansion 8, Proc. 8th Int. Symp., p. xiii+279, 89–92, (1981).Google Scholar
[24] Beadles, R. L. in CRC Materials Science and Engineering Hand Book, edited by Shackelford, J. F., Alexander, W., and Park, J. S., CRC Press Inc., 1994, pp. 340–1.Google Scholar
[25] Yaggee, F. L., Gilbert, E. R. and Styles, J. W., J. Less-Common Metals, 19, pp. 39– (1969).10.1016/0022-5088(69)90083-6Google Scholar
[26] Smithells, C. J. and Brandes, E.A., Metals Reference Book, 5th ed., MA: Butterworths, 1978, p. 943.Google Scholar
[27] White, G. K., J. Phys. F: Metal Phys. 2, pp. L30– (1972).10.1088/0305-4608/2/2/006Google Scholar
[28] Sype, J. Van den, Scripta Metallurgica, 4, pp. 251–4 (1970).10.1016/0036-9748(70)90115-8Google Scholar
[29] Petersen, K. E., Proc. IEEE, 70, pp. 420–57 (1982).10.1109/PROC.1982.12331Google Scholar
[30] Smithells, C. J. and Brandes, E.A., MetalsReference Book, 5th ed., MA: Butterworths, 1978, p. 1150 and p. 1258.Google Scholar
[31] Berlincourt, D. A., Curran, D. R., and Jaffe, H. in Physical Acoustics, edited by Mason, W. P., 1, part A, pp. 202–3 (1964).Google Scholar