Published online by Cambridge University Press: 01 February 2011
We present experimental results on the effect of strain on hole transport in InGaAs quantum well (QW) structures. Indium content was varied from lattice matched to high compressive stress in InGaAs/InP QW and the transport properties were analyzed at various temperatures (T = 77-300 K) using Hall measurements. The effect of QW thickness (4-20 nm) on hole transport is also presented. The current best results include room temperature mobility and sheet resistance of 390 cm2/V-s and 8500 Ω/sq., respectively. It was observed that the mobility had a T-1.8 dependence indicating similar scattering mechanism in almost all of the samples with prominent mechanism being due to interface and barrier scattering. Further optimization of p-channel for InGaAs CMOS needs to be performed using the above results as guidelines.