Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T13:15:25.848Z Has data issue: false hasContentIssue false

Statistical issues in Pitting Corrosion of Carbon Steel

Published online by Cambridge University Press:  28 February 2011

M. B. Mcneil*
Affiliation:
Office of Research, Nuclear Regulatory Commission, Washington, DC 20555
Get access

Abstract

A review is given of the state of understanding of the statistical distributions of pit depths and pit populations in carbon steel, with special reference to underground carbon steel structures, which appear to bear significant similarities to the alloys and conditions expected in basalt and salt high level waste repositories.

The data base on pit depth distributions is reviewed and the various phenomenological equations which have been used to rationalize laboratory and field observations are discussed and classified in terms of the statis- tical models underlying them. The present state of understanding of the physical phenomena underlying these distributions is reviewed, and sugges- tions for appropriate future research are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ailor, W.H. (1974),“Corrosion in Natural Environments“ASTM STP558 pp. 7581.Google Scholar
Beavers, J. and Markworth, A. (1986), in “Long Term Performance of Materials Used for High Waste Packaging” (NUREG/CR-4379), Stahl, D. and Miller, N. E., Eds., Battelle Columbus Laboratories, Columbus, Ohio.Google Scholar
Bertocci, U. (1981a) J. Electrochem. Soc., Vol. 128, pp. 520523.CrossRefGoogle Scholar
Bertocci, U. (1981b) “Detection and Analysis of Electrochemical Noise for Corrosion Studies,” in Proceedings of the 8th International Congress on Metallic Corrosion, DECHEMA, Frankfurt, 1981, pp. 20102020.Google Scholar
Bertocci, U. (1982) “Noise in Electrochemical Systems”, in Proceedings of the 6th International Conference on Noise in Physical Systems, NBS, Gaithersburg, MD, 1982, pp. 328331.Google Scholar
Bertocci, U., Koike, M., Leigh, S., Qiu, F., and Yang, G. (1986) “A Statistical Analysis of the Fluctuations in the Passive Current,” to appear in J. Electrochem. Soc.CrossRefGoogle Scholar
Bradford, S. A. (1970), Materials Performance, Vol. 7, pp. 1315.Google Scholar
Campana, R. J., Leary, R. H., Reynolds, G. H., and St. John, H.E. (1982) “Corrosion and Reliability Monitoring,” Report GA-C16932 on GA Technologies Project No. 3386, Sandia Contract 50-4868.Google Scholar
Champion, F. A. (1949), Industrial Chemistry, Vol. 25, pp 383387.Google Scholar
Chao, C. Y., Lin, L. F. and Macdonald, D. D. (1981), J. Electrochem. Soc. Vol. 12: pp 1187-1193, 11941199.Google Scholar
Cottis, R. A. and Laycock, P. J. (1985), “Statistics of Pitting,” UMIST Quarterly Technical Report, August 1985.Google Scholar
Cottis, R. A. and Laycock, P. J. (1986a), “Statistics of Pitting,” UMIST Quarterly Technical Report, February 1986.Google Scholar
Cottis, R.A. and Laycock, P.J. (1986a), “Statistics of Pitting,” UMIST Quarterly Technical Report, April 1986.Google Scholar
Eldredge, G. G. (1957), Corrosion Vol. 13, pp 5156.Google Scholar
Evans, U. R., (1955), Metallurgia, Vol. 52, pp. 107111.Google Scholar
Finley, H. F. and Toncre, A. C. (1964) Materials Protection Vol. 3, pp. 29-33, 35.Google Scholar
Finley, H.F. (1967), Corrosion, Vol. 3, pp. 8387.CrossRefGoogle Scholar
Gumbel, E. J. (1954), “Statistical Theory of Extreme Values and Some Practical Applications,” National Bureau of Standards, Applied Mathematics Series No. 33, (1954).Google Scholar
Haijtink, B., and Accary, A. (1984) “The Joint European Testing Programme on HLW Container Materials,” presented at Waste Management '84, Tucson, Arizona.Google Scholar
Hawn, D. E. (1977), Materials Performance, Vol. 16, pp. 2932.Google Scholar
Isaacs, H. S. (1986) Private Communication.Google Scholar
Logan, K. H., (1945) “Underground Corrosion,” National Bureau of Standards. Circular C45.Google Scholar
Macdonald, D. D. and Urquidi-Macdonald, M. (1985), “Distribution Functions for the Breakdown of Passive Films,” (J. Electrochem. Soc., to appear).Google Scholar
Macdonald, D. D.; Urquidi-Macdonald, M.; and Lenhart, S. J. (1985), “Recent Developments in the Point Defect Model for the Growth and Breakdown of Passive Films on Metal Surfaces“(J. Electrochem. Soc., to appear)Google Scholar
Marsh, G. P.; Taylor, K. J.; Bland, I. D.; and Smith, S. (1984), “Corrosion Behaviour of Container Materials for Geologic Disposal of High Level Waste,” EUR 10398 EN, Commission of the European Communities, Brussels.Google Scholar
Marsh, G. P.; Bland, I. D.; Taylor, K. J.; Sharland, S.; and Tasker, P. (1986) “An Assessment of Carbon Steel Overpacks for Radioactive Waste Disposal,” to appearGoogle Scholar
Mears, R. B. and Brown, R. H. (1937), Ind. Eng. Chem, Vol. 29, pp. 10871091.CrossRefGoogle Scholar
Pennington, W. A., (1965), Bureau of Reclamation Report, Ch. E-26.Google Scholar
Rozenfeld, I. L. (1970), “Korrosiya i Zashchita Metallov: Lokalniye Korrosionniye Protsesy“, Izd. Metallurigiya, Moscow.Google Scholar
Sato, N. (1977), J. Electrochem Soc., Vol. 123, pp. 11971199.CrossRefGoogle Scholar
Scott, G. N. (1933), American Petroleum Institute Bulletin.Google Scholar
Shibata, T. and Takeyama, T. (1976), Nature Vol. 260, pp. 315316.CrossRefGoogle Scholar
Shibata, T. and Takeyama, T. (1978), J. Japan Institute of Metals, Vol. 42, pp. 743750 (in Japanese).CrossRefGoogle Scholar
Shibata, T. and Takeyama, T. (1979), J. Japan Institute of Metals, Vol. 43, pp. 270278 (in Japanese).CrossRefGoogle Scholar
Shibata, T. and Takeyama, T. (1981), “Death and Stochastic Process,” in “Metallic Corrosion (1981)”, Proc. 8th Intl. Conf. on Metallic Corrosion, Mainz. Pub. Dechema, Frankfurt a.M., Germany.Google Scholar
Southwell, C. R., Forgeson, B. W., and Alexander, A. L. (1958), Corrosion, Vol. 14, pp. 435t439t.CrossRefGoogle Scholar
Southwell, C. R., Forgeson, B. W., and Alexander, A. L. (1960), Corrosion, Vol. 14, pp. 512t518t. CrossRefGoogle Scholar
Southwell, C. R. and Alexander, A. L. (1969a), Materials Protection, Vol. 8, pp. 3944. Google Scholar
Southwell, C. R. and Alexander, A. L. (1969b), “Corrosion of Metals in Tropical Environments Part 9-Structural Ferrous Metals”, NRL Report 6862, Naval Research Laboratory, Washington, DC.Google Scholar
Southwell, C. R., Bultman, J. D., and Alexander, A. L. (1976), Materials Performance, Vol. 15, pp. 925.Google Scholar
Strutt, J. E., Nicholls, J. R., and Barbier, B. (1985), Corrosion Science Vol. 25, pp. 305315.CrossRefGoogle Scholar
Urquidi, M. and Macdonald, D. D. (1985), Solute Vacancy Interaction Model and the Effect of Minor Alloying Elements on the Initiation of Pitting Corrosion” (J. Electrochem Soc., to appear)CrossRefGoogle Scholar
Williams, D. E., Westcott, C., and Fleischmann, M. (1985a), J. Electrochem Soc., Vol. 132, pp. 17961804.CrossRefGoogle Scholar
Williams, D. E., Westcott, C. and Fleischmann, M. (1985b), J. Electrochem Soc. Vol. 132, pp. 18041811.CrossRefGoogle Scholar