Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T02:01:10.507Z Has data issue: false hasContentIssue false

Static and Dynamic Displacements in α-Phase FeCr

Published online by Cambridge University Press:  22 February 2011

J. L. Robertson
Affiliation:
Oak Ridge National Laboratory, Solid State Division, Oak Ridge, TN 37831-6393
L. Reinhard
Affiliation:
Lawrence Livermore National Laboratory, Condensed Matter Division, Livermore, CA 94550; presently with Swissmetal Ltd., 4143 Dornach, Switzerland
D. A. Neumann+*
Affiliation:
National Institute of Standards and Technology, Reactor Radiation Division, Gaithersburg, MD 20899
S. C. Moss#*
Affiliation:
University of Houston, Physics Department, Houston, TX 77204-5506
Get access

Abstract

A single crystal of α-Fe0.47Cr0.53 was annealed at 1100K, 5K above the a-phase transition temperature, for four days and then water quenched. A detailed investigation using X-ray synchrotron radiation was previously carried out to study the short-range order and static displacements in this alloy. The phonon dispersion curves, studied here by inelastic neutron scattering, appear typical of bcc alloys and the phonon groups are observed to be significantly broadened in the vicinity of the dip at ξ=2/3 in the longitudinal [ξ ξ ξ] phonon dispersion. In this paper we explore the possibility that nearly random concentration fluctuations and an extremely small difference in the atomic sizes, together with an appropriate lattice response function, can nonetheless produce elastic diffuse scattering indicative of a new phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Reinhard, L., Robertson, J. L., Moss, S. C., Ice, G. E., Zschack, P. and Sparks, C. J., Phys. Rev. B 45, 2662 1992.Google Scholar
2 Hatt, B. A. and Roberts, J. A., Acta Metall. 8, 575 (1960).Google Scholar
3 Cook, H. E., Acta Met. 22, 239 (1974).Google Scholar
4 de Fontaine, D., Acta Metall. 18, 275 (1970); D. de Fontaine and 0. Buck, Phil. Mag. 27, 967 (1973); J. M. Sanchez and D. de Fontaine, Phys. Rev. Lett. 35, 227 (1975).Google Scholar
5 Yankel, H. L., Acta Cryst. B 39, 20 (1982).Google Scholar
6 Bergman, G. and Shoemaker, D. P., Acta Cryst. 7, 857 (1954).Google Scholar
7 Algie, S. H. and Hall, E. O., Acta Cryst. 20, 142 (1966).Google Scholar
8 Kitchenham, W. J., Acta Cryst. A 24, 282 (1968).Google Scholar
9 Heiming, A., Petry, W., Vogl, G., Trampeau, J., Schrober, H. R., Cherrier, J. and Schärpf, O., Z. Phys. B - Cond. Mat. 85, 239 (1991).Google Scholar
10 Wakabayashi, N., Phys. Rev. B 17, 3875 (1976).Google Scholar
11 Furusaka, M., Ishikawa, Y., Yamaguchi, S. and Fujino, Y., J. Phys. Soc. Jpn. 55, 2253 (1986).Google Scholar
12 Kaplan, T. and Mostoller, M., Phys. Rev. B 9, 1783 (1974).Google Scholar
13 Quimby, S. L. and Sutton, P. M., Phys. Rev. 91, 1122 (1953).Google Scholar
14 Minkiewicz, V. J., Shirane, G. and Nathans, R., Phys. Rev. 162, 528 (1967).Google Scholar
15 Shaw, W. M. and Muhlestein, L. D., Phys. Rev. B 4, 969 (1971).Google Scholar
16 Fultz, B., Anthony, L., Robertson, J. L., Nicklow, R. M., Spooner, S. and Mostoller, M., preprint.Google Scholar
17 Lovesey, S. W., Theory of Neutron Scattering from Condensed Matter, Vol. 1 (Oxford Science Publ., Oxford 1986), p. 299.Google Scholar
18 Heiming, A., Petry, W., Trampeau, J., Alba, M., Herzig, C. and Vogl, G., Phys. Rev. B 40, 11425 (1989).Google Scholar
19 Petry, W., Flottmann, T., Heiming, A., Trampeau, J., Alba, M. and Vogl, G., Phys. Rev. Lett. 61, 722 (1988).Google Scholar
20 Stasis, C., Zarestky, J. and Wakabayashi, N., Phys. Rev. Lett. 41, 1726 (1978).Google Scholar
21 Moss, S. C., Keating, D. T. and Axe, J. D. in Phase Transitions, edited by Cross, L. E. (pergaman Press, New York, NY 1973) p. 179; J. D. Axe, D. T. Keating and S. C. Moss, Phys. Rev. Lett. 35, 530 (1975).Google Scholar
22 Yamada, Y. and Fuchizaki, K., Phys. Rev. B 42, 9420 (1990).Google Scholar
23 Petry, W., Heiming, A., Trampeau, J., Alba, M., Herzig, C., Schrober, H. R. and Vogl, G., Phys. Rev. B 43, 10933 (1991).Google Scholar
24 Heiming, A., Petry, W., Trampeau, J., Alba, M., Herzig, C., Schrober, H. R. and Vogl, G., Phys. Rev. B 43, 10948 (1991).Google Scholar
25 Trampeau, J., Heiming, A., Petry, W., Alba, M., Herzig, C., Mickeley, W. and Schrober, H. R., Phys. Rev. B 43, 10963 (1991).Google Scholar
26 Y, Noda, Y, Yamada and Shapiro, S. M., Phys. Rev. B 40, 5995 (1989).Google Scholar
27 Y, Nakagawa and Woods, A. D. B., Phys. Rev. Lett. 11, 271 (1963).Google Scholar
28 Sharp, R. I., J. Phys. C: Solid State Phys. 2, 421 (1969).Google Scholar
29 Robinson, R. A., Squires, G. L. and Pynn, R., J. Phys. F: Met. Phys. 14 (1984).Google Scholar
30 Guenin, G., Rios Jara, D., Morin, M., Delaey, L., Pynn, R. and Gobin, P. F., J. de Phys. Coll. C4 Supp. No. 18 43, C4597 (1982).Google Scholar
31 Dosch, H. and Peisl, J., Phys. Rev. B 32, 623 (1985).Google Scholar
32 Dosch, H., Schwerin, A. v. and Peisl, J., Phys. Rev. B 34, 1654 (1986).Google Scholar
33 Vul, D. A. in Proceedings of the International Conference on Martensitic Transformations, edited by Wayman, C. M. and Perkins, J. (Monterey Institute of Advanced Studies, Carmel, CA 1993) p. 153.Google Scholar
34 Keating, D. T. and LaPlaca, S. J., J. Phys. Chem. Solids 35, 879 (1974).Google Scholar
35 Dawson, C. W. and Sass, S. L., Metall. Trans. 1, 2225 (1970).Google Scholar
36 Terauchi, H., Sakaue, K. and Hida, M., J. Phys. Soc. Jpn 50, 3932 (1981).Google Scholar