Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T00:49:01.508Z Has data issue: false hasContentIssue false

Stable and Responsive Fluorescent Carbon Nanotube Silica Gels

Published online by Cambridge University Press:  01 February 2011

Gautam Gupta
Affiliation:
gautam@lanl.gov, Los ALamos National Lab, CINT, Los Alamos, New Mexico, United States
Juan G. Duque
Affiliation:
jduque@lanl.gov, Los Alamos National Lab, Chemistry, 87544, New Mexico, United States
Stephen Doorn
Affiliation:
skdoorn@lanl.gov, Los ALamos National Lab, CINT, Los Alamos, New Mexico, United States
Andrew M. Dattelbaum
Affiliation:
amdattel@lanl.gov, Los ALamos National Lab, CINT, Los Alamos, New Mexico, United States
Get access

Abstract

Here we report a general route to prepare silica nanocomposite gels doped with fluorescent single walled carbon nanotubes (SWNT). We show that tetramethylorthosilicate (TMOS) vapors can be used to gel an aqueous suspension of surfactant-wrapped SWNT while maintaining fluorescence from the semiconducting nanotubes. The vapor phase silica process is performed at room temperature and is simple, reproducible, relatively quick, and requires no dilution of SWNT dispersions. However, exposure of aqueous SWNT suspensions to TMOS vapors resulted in an acidification of the suspension prior to gelation that caused a decrease in the emission signal from sodium dodecylsulfate (SDS) wrapped SWNT. We also show that although the SWNT are encapsulated in silica the emission signal from the encapsulated SWNT may be attenuated by exposing the nanocomposites to small aromatic molecules known to mitigate SWNT emission. These results demonstrate a new route for the preparation of highly luminescent SWNT/silica composite materials that are potentially useful for future sensing applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Baughman, R. H. Zakhidov, A. A. Heer, W. A. de, Science 297, 787 (August 2, 2002,).10.1126/science.1060928Google Scholar
2 Lefebvre, J. Maruyama, S. Finnie, P. in Carbon Nanotubes Nanotubes. (Springer-Verlag Berlin, 2008), vol. 111, pp. 287319.10.1007/978-3-540-72865-8_9Google Scholar
3 Dai, H. Surface Science 500, 218 (2002).10.1016/S0039-6028(01)01558-8Google Scholar
4 Satishkumarumar, B. C. et al. , Nature Nanotechnology 2, 560 (Sep, 2007).10.1038/nnano.2007.261Google Scholar
5 Satishkumar, B. C. Doorn, S. K. Baker, G. A. Dattellbaum, A. M. ACS Nano 2, 2283 (Nov, 2008).10.1021/nn8003839Google Scholar
6 Bachilo, S. M. et al. Journal of the American Chemical Society 125, 11186 (2003).10.1021/ja036622cGoogle Scholar
7 O'Connell, M. J. et al. , Science 297, 593 (July 26, 2002,).10.1126/science.1072631Google Scholar
8 Avouris, P. Freitag, M. Perebeinos, V. in Carbon Nanotubes Nanotubes. (Springer-Verlag Berlin, 2008), vol. 111, pp. 423454.10.1007/978-3-540-72865-8_14Google Scholar
9 Gupta, G. et al. , Langmuir 25, 13322 (2009).Google Scholar
10 Yamamoto, T. et al. , Appl. Phys. Express 2, (May, 2009).Google Scholar
11 Dattelbaum, A. M. et al. , J. Phys. Chem. B109, 14551 (Aug, 2005).Google Scholar
12 Latthe, S. S. Nadargi, D. Y. Rao, A. V. Appl. Surf. Sci. 255, 3600 (Jan, 2009).10.1016/j.apsusc.2008.10.005Google Scholar
13 Duque, J. G. et al. , Journal of the American Chemical Society 130, 2626 (2008).Google Scholar
14 O'Connell, M. J., Eibergen, E. E. Doorn, S. K. Nature Materials 4, 412 (May, 2005).10.1038/nmat1367Google Scholar