Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T22:39:36.554Z Has data issue: false hasContentIssue false

Spray-deposited Co-Pi Catalyzed BiVO4: a low-cost route towards highly efficient photoanodes

Published online by Cambridge University Press:  28 May 2012

Fatwa F. Abdi
Affiliation:
Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Delft University of Technology, P.O. Box 5045, 2600 GA Delft, The Netherlands
Nienke Firet
Affiliation:
Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Delft University of Technology, P.O. Box 5045, 2600 GA Delft, The Netherlands
Ali Dabirian
Affiliation:
Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Delft University of Technology, P.O. Box 5045, 2600 GA Delft, The Netherlands
Roel van de Krol
Affiliation:
Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Delft University of Technology, P.O. Box 5045, 2600 GA Delft, The Netherlands
Get access

Abstract

Bismuth vanadate (BiVO4) thin films are deposited by a low-cost and scalable spray pyrolysis method. Its performance under AM1.5 illumination is mainly limited by slow water oxidation kinetics. We confirm that cobalt phosphate (Co-Pi) is an efficient water oxidation catalyst for BiVO4. The optimum thickness of BiVO4 is 300 nm, resulting in an AM1.5 photocurrent of 1.9 mA/cm2 at 1.23 V vs. RHE when catalyzed with Co-Pi. Once the water oxidation limitation is removed, the performance is limited by low charge separation efficiency. This causes more than 60% of the electron-hole pairs to recombine before reaching the respective interfaces. The slow electron transport is shown to be the main cause of this low efficiency, and future efforts should therefore be focused on addressing this key limitation.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tokunaga, S., Kato, H., and Kudo, A., Chem. Mater. 13, 4624 (2001).Google Scholar
2. Chatchai, P., Murakami, Y., Kishioka, S. Y., Nosaka, A. Y., and Nosaka, Y., Electrochem. Solid State Lett. 11, H160 (2008).Google Scholar
3. Sayama, K., Wang, N., Miseki, Y., Kusama, H., Onozawa-Komatsuzaki, N., and Sugihara, H., Chem. Lett. 39, 17 (2010).Google Scholar
4. Luo, W. J., Yang, Z. S., Li, Z. S., Zhang, J. Y., Liu, J. G., Zhao, Z. Y., Wang, Z. Q., Yan, S. C., Yu, T., and Zou, Z. G., Energy Environ. Sci. 4, 4046 (2011).Google Scholar
5. Zhong, D. K., Choi, S., and Gamelin, D. R., J. Am. Chem. Soc. 133, 18370 (2011).Google Scholar
6. Jeon, T. H., Choi, W., and Park, H., Phys. Chem. Chem. Phys. 13, 21392 (2011).Google Scholar
7. Pilli, S. K., Furtak, T. E., Brown, L. D., Deutsch, T. G., Turner, J. A., and Herring, A. M., Energy Environ. Sci. 4, 5028 (2011).Google Scholar
8. Seabold, J. A. and Choi, K. S., J. Am. Chem. Soc. 134, 2186 (2012).Google Scholar
9. Liang, Y. Q., Tsubota, T., Mooij, L. P. A., and Van de Krol, R., J. Phys. Chem. C 115, 17594 (2011).Google Scholar
10. Abdi, F. F. and Van de Krol, R., submitted (2012).Google Scholar
11. Kanan, M. W. and Nocera, D. G., Science 321, 1072 (2008).Google Scholar
12. Steinmiller, E. M. P. and Choi, K. S., Proc. Nat. Acad. Sci. USA 106, 20633 (2009).Google Scholar
13. Zhao, Z. Y., Li, Z. S., and Zou, Z. G., Phys. Chem. Chem. Phys. 13, 4746 (2011).Google Scholar
14. Dotan, H., Sivula, K., Gratzel, M., Rothschild, A., and Warren, S. C., Energy Environ. Sci. 4, 958 (2011).Google Scholar
15. Sivula, K., Le Formal, F., and Graetzel, M., Chem. Mater. 21, 2862 (2009).Google Scholar
16. Linic, S., Christopher, P., and Ingram, D. B., Nature Mater. 10, 911 (2011).Google Scholar