Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T23:52:19.121Z Has data issue: false hasContentIssue false

Spectroscopic Ellipsometry Studies of Nanocrystalline Silicon in Thin-Film Silicon Dioxide

Published online by Cambridge University Press:  11 February 2011

Gerald E. Jellison Jr
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6030
Supriya Jaiswal
Affiliation:
Engineering Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6004
Christopher M. Rouleau
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6030
John T. Simpson
Affiliation:
Engineering Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6004
Clark W. White
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6030
C. Owen
Affiliation:
Hinds Instruments, Inc. 3175 N. W. Aloclek Drrive, Hillsboro, OR 97124–7135
Get access

Abstract

Nanocrystalline silicon (n-Si) is formed in a silicon dioxide thin-film matrix by ion implantation followed by thermal annealing in forming gas at 1100 °C for 1 hour. The ion implantation is performed using multiple implants with different implantation energies and doses to create a quasi-flat concentration of silicon atoms throughout the silicon dioxide film. These samples are then analyzed using spectroscopic ellipsometry to characterize their linear optical properties. Implantations with small doses (5 × 1020 Si atoms/cm3) increase the refractive index by a small amount (δn∼0.006 at 600nm), while implantations with moderate dose (5 × 1021 Si atoms/cm3) have a larger increase in refractive index and exhibit optical absorption above ∼1.9 eV (650 nm).

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Pavesi, L., Dal Negro, L., Mazzoleni, C., Franzò, G., and Priolo, F., Nature, 408, 440 (2000).Google Scholar
Khriachtchev, L., Rasanen, M., Novikov, S., and Sinkkonen, J., Appl. Phys. Lett. 79, 1249 (2001).Google Scholar
Withrow, S. P., White, C. W., Meldrum, A., Budai, J. D., Hembree, D. M. Jr and Barbour, J. C., J. Appl. Phys. 86, 396 (1999).Google Scholar
4. White, C. W., Withrow, S. P., Meldrum, A., Budai, J. D., Hembree, D. M., Zhu, J. G., Henderson, D. O., and Prawer, S.,, Mat. Res Soc. Symp. Proc. 507, 249 (1998).Google Scholar
5. Jellison, G. E. Jr, and Modine, F. A., Appl. Opt. 36, 8184 (1997);Google Scholar
Jellison, G. E. Jr, and Modine, F. A., Appl. Opt. 36, 8190 (1997).Google Scholar
6. Jellison, G. E. Jr, Appl. Opt, 30, 3354 (1991); Thin Solid Films 313, 33 (1998).Google Scholar
7. Bruggeman, D. A. G., Ann. Phys., (Leipzig) 24, 636 (1935).Google Scholar
8. Maxwell Garnett, J. C., Philos. Trans. R. Soc. London, 203, 385 (1904);Google Scholar
Maxwell Garnett, J. C., Philos. Trans. R. Soc. London, A 205, 237 (1906).Google Scholar
9. Jellison, G. E. Jr, and Modine, F. A., Appl. Phys. Lett. 69, 371 (1996);Google Scholar
Jellison, G. E. Jr, and Modine, F. A., Appl. Phys. Lett. 69, 2137 (1996).Google Scholar
10. Jellison, G. E. Jr, Chisholm, M. F., and Gorbatkin, S. M., Appl. Phys. Lett. 62, 3348(1993).Google Scholar
11. Jellison, G. E. Jr, Optical Materials, 1, 4147 (1992).Google Scholar