Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T23:44:11.434Z Has data issue: false hasContentIssue false

Spectroscopic Ellipsometry of Strained Si/Ge Superlattices Grown by Magnetron Sputter Epitaxy

Published online by Cambridge University Press:  15 February 2011

G. Guizzetti
Affiliation:
INFM-Dipartimento di Fisica “A. Volta”, Università di Pavia, Via Bassi 6, I-27100 Pavia, Italy
M. Patrini
Affiliation:
INFM-Dipartimento di Fisica “A. Volta”, Università di Pavia, Via Bassi 6, I-27100 Pavia, Italy
P. Sutter
Affiliation:
Laboratorium für Festkörperphysik, ETH-Hönggerberg, CH-8093 Zurich, Switzerland
H. Von Känel
Affiliation:
Laboratorium für Festkörperphysik, ETH-Hönggerberg, CH-8093 Zurich, Switzerland
Get access

Abstract

Spectroscopic ellipsometry was used to characterize several short-period SimGen strained superlattices grown on Si(100) substrates or on graded SixGel-x alloy buffers (strainsymmetrization) by magnetron sputter epitaxy, a novel technique with potential application to industry-scale production of epitaxial Si/Ge heterostructures. Ellipsometric spectra were analyzed within a multilayer model, which included an oxide overlayer, in order to derive the effective dielectric fimctions of the SLs. spectra cannot be simulated by a sequence of Ge+Si slabs and compared to those of the compositionally equivalent alloys showed noticeable differences which can be ascribed to a combination of strain and confinement effects. The results agree with experimental findings and theoretical predictions on analogous SLs grown by MBE, thus confirming the reliability of the used technique to produce good quality SLs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Presting, H., Kibbel, H., Jaros, M., Turtin, R.M., Menczigar, U., Abstreiter, G. and Grimmeiss, H.G., Semicond. Sci. Technol. 7, 1127 (1992).Google Scholar
2. Schmid, U., Christensen, N.E., Alouani, M., and Cardona, M., Phys. Rev. B43, 14597 (1991).Google Scholar
3. Sutter, P., Schwarz, C., Muller, E., Zelezny, V., Goncalves-Conto, S. and Käinel, H. Von, Appl. Phys. Lett. 65. 2220 (1994).Google Scholar
4. Ohtani, N., Mokler, S.M., and Joyce, B.A., Surf. Sci 295, 325 (1993)Google Scholar
5. Humlicek, J., Lukes, F., and Schmidt, E., in “Handbook of Optical Constants of Solids”, ed. by Palik, E.D. (Academic Press, San Diego, 1991), pag. 607.Google Scholar
6. Pearsall, T.P., Bevk, J., Feldman, L.C., Bonar, J.M., Mannaerts, J.P., and Ourmazd, A., Phys. Rev. Lett. 58, 729 (1987).Google Scholar
7. Schmid, U., Lukes, F., Christensen, N.E., Alouani, M., Cardona, M., Kasper, E., Kibbel, H., Presting, H., Phys. Rev. Lett. 65, 1933 (1990).Google Scholar
8. Schmiid, U., Humlicek, J., Lukes, F., Cardona, M., Presting, H., Kibbel, H., Kasper, E., EberlM, K.,, Wegscheider, W., and Abstreiter, G., Phys. Rev. B 45, 6793 (1992).Google Scholar
9. Ghahramani, E., Moss, D.J., and Sipe, J.E., Phys. Rev. B 41, 5112 (1990).Google Scholar