Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T13:49:13.710Z Has data issue: false hasContentIssue false

Species-resolved imaging and gated photon counting Spectroscopy of laser ablation plume dynamics During krf- and arf-laser pld of amorphous diamond films

Published online by Cambridge University Press:  15 February 2011

David B. Geohegan
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6056, odg@ornl.gov
Alexander A. Puretzky
Affiliation:
Institute of Spectroscopy, Troitsk, Russia
Get access

Abstract

Gated photon counting spectroscopy and species-resolved ICCD photography have been applied to study the weak plasma luminescence which occurs following the propagation of the initial ablation plume in vacuum and during the ‘rebound’ of the plume with a substrate during pulsed laser deposition of amorphous diamond. These time- and spatially-resolved spectroscopic techniques were required in order to investigate notable differences between amorphous diamond-like carbon films formed by pulsed laser deposition from ArF (193 nm) and KrF (248 nm) irradiation of pyrolytic graphite in vacuum. Three principal regions of plume emission have been characterized: (1) a bright luminescent ball (v ∼3-5 cm/(μ.s) displaying nearly entirely C+ emission which appears to result from laser interaction with the initial ejecta, (2) a spherical ball of emission (v ∼1 cm/μs) displaying neutral carbon atomic emission lines and, at early times, jets of excited C2, and (3) a well-defined region of broadband emission (v ∼ 0.3 cm/μs) near the target surface first containing emission bands from C2, then weak, continuum emission thought to result from C3 and higher clusters and/or blackbody emission from hot clusters or nanoparticles. For both lasers, the measurements reveal an explosive interaction within the plume which results in a variety of new gas dynamic observations in vacuum:. These include (a) generation of instabilities or jets, (b) confinement of a residual part of the plume near the pellet surface, (c) cluster formation in the collisional, confined regions of the plume, and (d) reflection of the confined region backward to splash and redeposit on the pellet surface. Evidence for gas-phase formation of these clusters in vacuum is indicated from the dynamic evolution of the same cluster bands observed during the collision of the plume with the substrate surface during film growth. Addition of background gases strongly enhances the third (cluster) component, in accordance with plume-splitting phenomena. The combination of sensitive imaging and photon-counting diagnostic techniques permit an understanding of the importance of gas dynamic effects, such as clustering, on the time-of-flight distributions of species arriving during the deposition of thin films in both vacuum and background gases.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 McKenzie, D. R., Muller, D., and Pailthorpe, B. A., Phys. Rev. Lett. 67, 773 (1991).Google Scholar
2 Davanloo, F., Juengerman, E. M., Jander, D. R., Lee, T. J., and Collins, C. B., J. Appl. Phys. 67, 2081 (1990).Google Scholar
3 Collins, C. B., Davanloo, F., Jander, D. R., Lee, T. J., Park, H., and You, J. H., J. Appl. Phys. 69, 7862 (1991).Google Scholar
4 Davanloo, F., Lee, T. J., Jander, D. R., Park, H., You, J. H. and Collins, C. B., J. Appl. Phys. 71, 1446 (1992).;Google Scholar
5 Collins, C. B., Davanloo, F., Lee, T. J., Park, H., and You, J. H., J. Vac. Sci. Technol. B 11, 1936 (1993).Google Scholar
6 Cuomo, J. J., Pappas, D. L., Bruley, J., Doyle, J. P., and Saenger, K. L., J. Appl. Phys. 70, 1706 (1991).Google Scholar
7 Pappas, D. L., Saenger, K. L., Bruley, J., Krakow, W., Cuomo, J. J., Gu, T., and Collins, R. W. J. Appl. Phys. 71, 5675 (1992).Google Scholar
8 Pappas, D. L., Saenger, K. L., Cuomo, J. J., and Dreyfus, R. W., J. Appl. Phys. 72, 3966 (1993).Google Scholar
9 Xiong, F., Wang, Y. Y., Leppert, V., and Chang, R. P. H., J. Mater. Res. 8, 2265 (1993).Google Scholar
10 Xiong, F., Wang, Y. Y., and Chang, R. P. H., Phys. Rev. B 48, 8016 (1993).Google Scholar
11 Puretzky, A. A., Geohegan, D. B., Jellison, G. E. Jr., and McGibbon, M. M., in Film Synthesis and Growth Using Energetic Beams, edited by Atwater, H. A., Dickinson, J. T., Lowndes, D. H., Polman, A. (Mat. Res. Soc. Symp. Proc. 388, Pittsburgh, PA, 1995), p. 145150.Google Scholar
12 Puretzky, A. A., Geohegan, D. B. and, Jellison, G. E. Jr., and McGibbon, M. M., Proceedings of the Third International Conference on Laser Ablation COLA'95/EMRS (Strasbourg France, May 1995), Appl. Surf. Science (in press).Google Scholar
13 Geohegan, D. B., Appl. Phys. Lett. 60, 2732 (1992).Google Scholar
14 Geohegan, David B., in Laser Ablation in Materials Processing: Fundamentals and Applications, edited by Braren, B., Dubowski, J., and Norton, D., (Mat. Res. Soc. Symp. Proc. 285, Pittsburgh, PA, 1993), p. 2732.Google Scholar
15 Geohegan, D. B. and Puretzky, A. A., Appl. Phys. Lett. 67, 197 (1995).Google Scholar
16 Geohegan, D. B. and Puretzky, A. A., in Film Synthesis and Growth Using Energetic Beams. edited by Atwater, H. A., Dickinson, J. T., Lowndes, D. H., Polman, A. (Mat. Res. Soc. Symp. Proc. 388, Pittsburgh, PA, 1995), p. 2126.Google Scholar
17 Geohegan, D. B. and Puretzky, A. A., Proceedings of the Third International Conference on Laser Ablation COLA'95/EMRS (Strasbourg France, May 1995), Appl. Surf. Science (in press).Google Scholar
18 Geohegan, D. B., Puretzky, A. A., Hettich, R. L., Zheng, X.-Y., Haufler, R. E., and Compton, R. N., p. 349 in Advanced Materials “93, IV/ Laser and Ion Beam Modification of Materials, edited by Yamada, I. et al. , IUMRS-ICAM Conference, Trans. Mat. Res. Soc. Jpn., Volume 17, (1994).Google Scholar
19 Puretzky, A. A., Geohegan, D. B., Haufler, R. E., Hettich, R. L., Zheng, X.-Y., and Compton, R. N., in Laser Ablation: Mechanisms and Applications II, edited by Miller, J.C. and Geohegan, D.B., Amer. Inst. of Physics Conf. Proc. 288: (Amer. Inst. of Physics, New York, 1994), p. 365.Google Scholar
20 Weltner, W. Jr. and VanZee, R. J., Chem. Rev. 89, 1713 (1989).Google Scholar
21 Spectra of Diatomic Molecules by Herzberg, G., Nostrand, Van, New York, 1950.Google Scholar
22 The Identification of Molecular Spectra, 4th ed., by Pearse, R. W. B. and Gaydon, A. G., (Chapman and Hall, London, 1984), p.85.Google Scholar
23 Kratschmer, W., Sorg, N., and Huffman, D. R., Surface Science 156, 814 (1985).Google Scholar
24 Rohlfing, E. A., J. Chem. Phys. 89, 6103 (1988).Google Scholar
25 Lowndes, D. H., Rouleau, C. M., Geohegan, D. B., Puretzky, A. A., Strauss, M. A., Pedraza, A. J., Park, J. W., Budai, J. D., and Poker, D. B., “Pulsed Laser Ablation Growth and Doping of Epitaxial Compound Semiconductor Films,” in Advanced Laser Processing of Materials–Fundamentals and Applications,” Materials Research Society Meeting, 1995 (this proceeding).Google Scholar
26 Rouleau, C. M., Lowndes, D. H., Strauss, M. A., Cao, S., Pedraza, A. J., Geohegan, D. B., Puretzky, A. A. A., and Allard, L. F., “Effect of Ambient Gas Pressure on Pulsed Laser Ablation Plume Dynamics and ZnTe Film Growth,” in Advanced Laser Processing of Materials–Fundamentals and ApplicationsMaterials Research Society Meeting, 1995 (this proceeding).Google Scholar
27 Lowndes, Douglas H., Rouleau, C. M., McCamy, J. W., Budai, J. D., Poker, D. B., Geohegan, D. B., Puretzky, A. A., and Zhu, Zhen, p. in Film Synthesis and Growth Using Energetic Beams, edited by Atwater, H. A., Dickinson, J. T., Lowndes, D. H., Polman, A. (Mat. Res. Soc. Symp. Proc. 388, Pittsburgh, PA, 1995), p. 8590.Google Scholar
28 Rouleau, C. M., Lowndes, D. H., McCamy, J. W., Budai, J. D., Poker, D. B., Geohegan, D. B., Puretzky, A. A., and Zhu, S., Appl. Phys. Lett. 67, 2545 (1995).Google Scholar
29 Krajonovich, D. J., J. Chem. Phys. 102, 726 (1995).Google Scholar
30 Monchicourt, P., Phys. Rev. Lett. 66, 1430 (1991).Google Scholar