Published online by Cambridge University Press: 15 February 2011
Carbon-14 sorption by cementitious materials should be enhanced to ensure the long term safety of radioactive waste repositories. The sorption mechanism of inorganic C- 14 (CO32- was investigated using batch sorption experiments and zeta potential measurements. The results suggested that C-14 was adsorbed onto the cement surface by an electrostatic force, due to the reaction between SiO2 and CaO contained in the cementitious composition. That is, SiO2 was originally negatively charged (SiO-) in cement, but became positively charged through the interaction of Ca2+. These positive sites on the SiO2 surface adsorbed inorganic C-14. Ordinary Portland cement (OPC) did not contain enough SiO2 compared with its CaO content to produce sufficient numbers of C-14 adsorption sites. The C-14 distribution coefficient (Kd) was increased from 2,000 to 7,000 mL/g by adding SiO2 to OPC.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.