Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T04:20:51.318Z Has data issue: false hasContentIssue false

Solution Flow System for Hydrothermal-Electrochemical Synthesis: New Opportunities for Multilayered Oxide Films

Published online by Cambridge University Press:  10 February 2011

W. Suchanek
Affiliation:
Center for Materials Design, Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan
T. Watanabe
Affiliation:
Center for Materials Design, Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan
B. Sakurai
Affiliation:
Center for Materials Design, Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan
M. Yoshimura
Affiliation:
Center for Materials Design, Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan
Get access

Abstract

A solution flow system for hydrothermal-electrochemical synthesis has been constructed in our laboratory. This equipment can operate at 20°-200°C, under the pressure of 1-50 atm., at flow rate of 1-50 cm3/min. Applicability of the flow system for low-temperature, hydrothermalelectrochemical synthesis of single-layer and multilayered thin films has been demonstrated using the BaTiO3-SrTiO3 system as an example. Single phase thin films as well as double layers have been deposited at 150°C, current density of 1 mA/cm2, and flow rates of 1-50 cm3/min. The flow rate is an important parameter allowing additional control of the films' morphology by affecting the growth rate. The multilayers can be prepared in only one experiment by simply changing the flowing solution. Processing using the solution flow cell may serve as an inexpensive and environmentally friendly way of fabricating any multilayered thin films, including magneto-optic films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ohring, M., The Materials Science of Thin Films, Academic Press, 1992.Google Scholar
2. Klein, L. (editor), Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics, and Specialty Shapes, Noyes Publ., 1988.Google Scholar
3. Klein, L. (editor), Sol-Gel Optics. Processing and Applications, Kluwer Academic Publishers, Boston/Dordrecht/London, 1994.Google Scholar
4. Yoshimura, M. and Suchanek, W., Solid State Ionics, 98, 197 (1997).10.1016/S0167-2738(97)00103-3Google Scholar
5. Yoshimura, M., J. Mater. Res., 13, 796 (1998).Google Scholar
6. Yoshimura, M., Suchanek, W., Watanabe, T., Sakurai, B. and Abe, M., J. Mater. Res., 13, 875 (1998).Google Scholar
7. Porter, J. M., Pohl, D. C. and Rimstid, J. D. in Hydrothermal Experimental Techniques, edited by Ulmer, G. C. and Barnes, H. L. (John Willey & Sons, New York, 1987), pp. 240–60.Google Scholar
8. Abe, M., Tamaura, Y., Goto, Y., Kitamura, N. and Gomi, M., J. Appl. Phys., 61, 3211 (1987).10.1063/1.338904Google Scholar
9. see the introductory section of ref. [6].Google Scholar
10. Lencka, M. and Riman, R. E., Ferroelectrics, 151, 159 (1994).Google Scholar
11. Seewald, J. S. and Seyfried, W. E. Jr, Geochimica et Cosmochimica Acta, 55, 659 (1991).Google Scholar
12. Elwell, D. and Scheel, H. J., Crystal Growth from High-Temperature Solutions, Academic Press, 1975.Google Scholar
13. Nesbitt, H. W., Bancroft, G. M., Fyfe, W. S., Karkhanis, S. N., Nishijima, A. and Shin, S., Nature, 289, 358 (1981).10.1038/289358a0Google Scholar
14. for list of References see ref. [4] and [5]Google Scholar
15. Koinuma, M., Hirae, T. and Matsumoto, Y., J. Mater. Res., 13, 837 (1998).Google Scholar
16. Kitamoto, Y., Kantake, S. and Abe, M., J. Magnet. Soc. Jpn., 21, 81 (1997).10.3379/jmsjmag.21.S2_81Google Scholar
17. Abe, M., Kitamoto, Y., Matsumoto, K., Zhang, M. and Li, P., IEEE Trans. Magn., 33, 3649 (1997).10.1109/20.619526Google Scholar
18. McKinney, B. L. and Faust, C. L., J. Electrochem. Soc., 124, 379C (1977).Google Scholar
19. Yokoyama, N., Muto, S., Imamura, K., Takatsu, M., Mori, T., Sugiyama, Y., Sakuma, Y., Nakao, H. and Adachihara, T., Solid-State Electronics, 40, 505 (1996).Google Scholar
20. Fendler, J. H. and Meldrum, F. C., Adv. Mater., 7, 607 (1995).10.1002/adma.19950070703Google Scholar
21. Lange, F. F., Science, 273, 903 (1996).Google Scholar
22. Ross, C. A., Annu. Rev. Mater. Sci., 24, 159 (1994).Google Scholar
23. Abe, M., Miki, T. and Kitamoto, Y., J. Phys IV France, 7, C1597 (1997).Google Scholar
24. Abe, M., J. Phys IV France, 7, C1467 (1997).Google Scholar
25. Switzer, J. A., Hung, C. J., Breyfogle, B. E., Shumsky, M. G., Vanleeuwen, R. and Golden, T. D., Science, 264, 1573 (1994).10.1126/science.264.5165.1573Google Scholar
26. Switzer, J. A., Hung, C. J., Huang, L. Y., Miller, F. C., Zhou, Y., Raub, E. R., Shumsky, M. G. and Bohannan, E. W., J. Mater. Res., 13, 909 (1998).10.1557/JMR.1998.0124Google Scholar
27. Zvezdin, A. K. and Kotov, V. A., Modern Magnetooptics and Magnetooptical Materials, Intitute of Physics Publ., London, 1997.10.1887/075030362XGoogle Scholar
28. Van Hout, M. J. G., Verplanke, J. C. and Robertson, J. M., Mater. Res. Bull. 10, 125 (1975).Google Scholar
29. Georgescu, V., Mazur, V. and Chelogu, O., J. Magnet. Magnet. Mater. 156, 27 (1996).Google Scholar
30. Jyoko, Y., Kashiwabara, S. and Hayashi, Y., J. Electrochem. Soc., 144, L5 (1997).Google Scholar
31. Callegaro, L., Puppin, E., Cavallotti, P. L., Lecis, N. and Zangari, G., J. Appl. Phys., 78, 457 (1995).Google Scholar
32. Shadrov, V. G., Tkachenko, T. M., Boltushkin, A. V. and Semeshko, A. V., Phys. Stat. Sol. A, 141, K51 (1994).Google Scholar
33. Lokhande, C. D., Jadhav, M. S. and Pawar, S. H., J. Electrochem. Soc., 136, 2756 (1989).Google Scholar
34. Yang, M-C., Landau, U. and Angus, J. C., J. Electrochem. Soc., 139, 3480 (1992).10.1149/1.2069103Google Scholar
35. Pannaparayil, T., Marande, R., Komarneni, S. and Sankar, S. G., J. Appl. Phys., 64, 5641 (1998).Google Scholar
36. Dogan, F., O'Rourke, S., Qian, M-X. and Sarikaya, M., Mater. Res. Soc. Symp. Proc., 457, 69 (1997).Google Scholar
37. Hadj Farhat, M. A. and Joubert, J. C., J. Magnet. Magnet. Mater., 62, 353 (1986).Google Scholar
38. Cabafias, M. V., Gonzales-Calbet, J. M. and Vallet-Regi, M., J. Solid State Chem. 115, 347 (1995).Google Scholar
39. Brooman, E. W., Plat. Surf. Fin., 1985, 142.Google Scholar
40. Kajiyoshi, K., Ishizawa, N. and Yoshimura, M., Jpn. J. Appl. Phys., 30, L120 (1991).Google Scholar
41. Chien, A. T., Speck, J. S., Lange, F. F., Daykin, A. C. and Levi, C. G., J. Mater. Res. 10, 1784 (1995).10.1557/JMR.1995.1784Google Scholar
42. Chien, A. T., Zhao, L., Colic, M., Speck, J. S. and Lange, F. F., J. Mater. Res. 13, 649 (1998).Google Scholar
43. Tuller, H. L., Ceram. Trans., 68, 97 (1996).Google Scholar
44. Gutmann, R. J., Chow, T. P., Lakshminarayanan, S., Price, D. T., Steigerwald, J. M., You, L. and Murarka, S. P., Thin Solid Films, 270, 472 (1995).Google Scholar